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ABSTRACT 

In this paper, we present a novel physics-informed neural 

network modeling approach for corrosion-fatigue. The 

hybrid approach is designed to merge physics-informed and 

data-driven layers within deep neural networks. The result is 

a cumulative damage model where the physics-informed 

layers are used to model the relatively well-understood 

physics (crack growth through Paris law) and the data-driven 

layers account for the hard to model effects (damage bias due 

to corrosion). A numerical experiment is used to present the 

main features of the proposed physics-informed recurrent 

neural network for damage accumulation. The test problem 

consists of predicting corrosion-fatigue of an Al 2024-T3 

alloy used on fuselage panels of aircraft wings. Besides cyclic 

loading, the panels are also subjected to saline corrosion 

(3.5% solution of sodium chloride, emulating coastal 

exposure). The physics-informed neural network is trained 

using full observation of inputs (far-field loads, stress ratio 

and a corrosion index for environment corrosivity defined by 

airport) and very limited observation of outputs (crack length 

at inspection for only a small portion of the fleet). We then 

address the following question: Is the physics-informed 

neural network able to properly compensate corrosion 

effects on fatigue damage accumulation? Results 

demonstrate that our proposed framework is able to 

accurately compensate for damage bias due to the lack of 

corrosion modeling in the mechanical fatigue model. 

Additionally, results indicate that corrosion plays a drastic 

role in crack propagation significantly reducing useful life. 

1. INTRODUCTION 

Aging aircraft fleets is currently a major issue. It was 

estimated that in the early 2000s about 60% of the US 

manufactured fleet consisted of aircrafts older than 20 years 

(Shi and Mahadevan, 2001). One of the main causes of 

failures in aged aircraft is corrosion-fatigue damage to 

aluminum alloys components (Larrosa et al., 2018). Reports 

of corrosion pits leading to cracks in operating aircrafts can 

be found in Chen et al. (1994), Wang et al. (2001) and 

DuQuesnay et al. (2003). Under usage life, these components 

are exposed to aggressive environments making it susceptible 

to corrosion. The synergistic nature of corrosion and fatigue 

leads to early life failures at lower stress levels than designed.  

In published literature corrosion-fatigue is modeled 

following the basic stages of pit nucleation and growth; pit to 

crack transition; crack propagation. Most published models 

focus in either pit to crack transition (Lindley, 1982; Kondo, 

1989; and Chen et al, 1996) or crack growth (Wang et al., 

2001). To the best of our knowledge, no published model 

related to corrosion-fatigue addresses the aforementioned 

features for prognosis 

This contribution aims to evaluate the use of a hybrid 

physics-informed neural network to model corrosion-fatigue 

damage accumulation in an operating fleet. The proposed 

framework is an extension of the cumulative damage 

recurrent neural network introduced by Nascimento and 

Viana (2019). While Nascimento and Viana (2019) focused 

on fatigue crack growth under mechanical loads, here we 

focus on corrosion-fatigue. Additionally, the main novelty 

of this work is the use of a hybrid recurrent neural 

network to estimate the prediction bias of a physical 

model. In our proposed framework, data-driven layers 

(artificial neural networks) are trained to act as a bias 

estimator, compensating the corrosion damage bias on a well-

known mechanical fatigue model (physics-informed layers of 

the neural network).  

Literature reports several applications of recurrent neural 

networks (RNNs) to model time-series (Connor et al., 1994; 

Sak et al., 2014; Chauban and Vig, 2015). Recently, RNNs 

architectures have been proposed to address physics-based 

applications. Trischler and D’Eleuterio (2016) present a 

review on current RNNs training approaches for dynamical 

systems response approximation along with a proposed 

feedforward neural network that is able to replicate the 

system dynamics. Yu et al. (2018) expand the framework 

known as deep residual recurrent network (DR-RNN) into a 

hybrid model in order to simulate aircraft dynamics. 

Nascimento and Viana (2019) proposed an RNN cell inspired 
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by cumulative damage models and applied for crack 

propagation.  

Training RNNs is a daunting task. For the proposed 

framework, crack length information is only provided after 

several thousands of operational cycles, forcing the neural 

network to backtrack the entire crack propagation history of 

each aircraft until that point. It is also expected from the 

derived model the ability to forecast damage propagation and 

aid in the fleet prognosis. This work is also aligned with the 

currently developed trend of machine learning in prognosis 

model (Susto et al, 2015; Zhao et al, 2016; Khan and Yairi 

2018; and Li et al, 2018).   

The remaining of this paper is organized as follows: a brief 

discussion of the proposed damage accumulation model is 

presented in Section 2. The considered numerical experiment 

and its discussed Section 3. The main results regarding the 

proposed physics-informed recurrent neural network for fleet 

diagnosis and prognosis are presented and discussed in 

Section 4. Finally, some final remarks and future work are 

addressed in Section 5. 

2. PHYSICS-INFORMED RECURRENT NEURAL NETWORK 

FOR CORROSION-FATIGUE DAMAGE ACCUMULATION 

2.1. Recurrent Neural Networks and Cumulative 

Damage Models 

A recurrent neural network (Goodfellow et al., 2016) 

repeatedly apply transformations to given states in a time-

series sequence, as shown in Figure 1-(a).  

𝒂𝒕 = 𝑓(𝒙𝑡 , 𝒂𝑡−1) (1) 

where 𝑡 ∈  [0, … , 𝑇] represent the time discretization, 𝒂 ∈
ℝ𝑛𝑑  are the states representing the sequence, 𝒙𝑡 ∈ ℝ𝑛𝑥  are 

input (observable) variables, and 𝑓(. ) is the transformation 

to the hidden state (in its simplest form, 𝑓(. ) is a perceptron). 

Cumulative damage models (Fatemi and Yang, 1998; and 

Frangopol et al, 2004) track progressive distress through a 

time series and can be formulated as RNNs. Nascimento and 

Viana (2019) introduced the cumulative damage cell for 

RNNs as illustrated in Figure 1-(b). In such cell design, the 

state represents the cumulative damage at time 𝑡  and 

“MODEL” maps the inputs 𝑥𝑡  and previously accumulated 

damage  𝒂𝑡−1 into a damage increment Δ𝒂𝑡 : 

 

 𝒂𝑡 = 𝒂𝑡−1 + Δ𝒂𝑡, (2) 

“MODEL” is the implementation of the physics of failure, 

which is highly application dependent. Nevertheless, as far as 

modeling approach, the “MODEL” block could be (a) a data-

driven model, such as a multi-layer perceptron, (b) a physics-

informed model, with appropriate physical fidelity to reflect 

the failure mechanism within the expected computational 

efficiency, or more interestingly, (c) a hybrid model, where 

some parts are physics-based while others are data-driven. 

 

 
(a) Recurrent neural network 

 
(b) Cumulative damage cell 

Figure 1. RNN cumulative damage model: (a) an unrolled 

recurrent neural network, and (b) cumulative damage cell. 

2.2. Hybrid Recurrent Neural Networks for Bias 

Estimation  

In this contribution, we extend the framework proposed by 

Nascimento and Viana (2019) to yield a hybrid recurrent 

neural network that acts as a bias estimator as illustrated in 

Figure 2. The proposed hybrid approach is designed to merge 

physics- informed and data-driven layers within deep neural 

networks. The result is a cumulative damage model where the 

physics-informed layers are used to model the relatively well-

understood physics and the data-driven layers act as a bias 

compensator, accounting for effects of hard to model failure 

mechanisms. 

 

Figure 2. Bias estimation through an artificial neural 

network (ANN) layer. 

2.3. Combined Damage Model: Corrosion-fatigue 

Corrosion-fatigue is a very complex phenomenon involving 

pit nucleation, pit growth, fatigue crack nucleation, short 

crack growth, a transition from short crack to long crack, and 

long crack growth. Modeling corrosion-fatigue has proven to 

be a daunting task (Goswani and Hoeppner, 1995; Shi and 

Mahadevan, 2001) and it is not our objective to propose any 
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preferred method for it. Instead, we will focus on corrosion-

fatigue crack growth to show how the framework proposed 

in the previous section can be designed and trained to act as 

a bias estimator, compensating the corrosion effects in the 

loading cycles subject to corrosion. 

As shown in Menan and Henaft (2010) corrosion-fatigue 

crack propagation can be modeled through Paris’ Law (Paris 

and Erdogan, 1963)  

𝑑𝑎

𝑑𝑡
= 𝐶(Δ𝐾)𝑚, 

(3) 

where  Δ𝐾  is the stress intensity range and C and m  are 

material properties (dependent on the corrosive environment, 

as shown in Figure 3). 

In its discrete form, Eq. (3) becomes 

𝑎𝑡 = 𝑎𝑡−1 + 𝐶(Δ𝐾𝑡)𝑚. (4) 

Assuming that the considered cracks are through the 

thickness center crack in an infinite plate with loads applied 

perpendicularly to the crack plane, the stress intensity can be 

expressed as shown in Eq. (5), where F is a geometry factor 

and Δ𝑆𝑡 is the far-field stress. 

Δ𝐾𝑡 = 𝐹Δ𝑆𝑡√𝜋𝑎𝑡−1. (5) 

The last effect we will consider in our model is the average 

load level through ratio between the minimum and maximum 

stress levels ( 𝑅 = 𝑆𝑚𝑖𝑛/𝑆𝑚𝑎𝑥 ). A simple modification of 

Paris’ model known as Walker equation (Dowling, 2012) is 

able to incorporate the stress ratio effects on the damage 

accumulation: 

𝐶 =
𝐶0

(1 − 𝑅)𝑚(1−𝛾)
, 

(6) 

where 𝐶0  and 𝑚  depend on the environmental conditions 

(see Figure 3) and 𝛾 depends on the material properties and 

loading conditions. 

Using Eqs. (2) and (4), we can write the damage increment at  

Δ𝑎𝑡 as a linear relationship in the log-space 

log10 Δ𝑎𝑡 = log10 𝐶 + 𝑚 ∗ log10 Δ𝐾𝑡 (7) 

where 𝐶  and 𝑚  are functions of the stress ration and 

environmental conditions (which functional form is not 

always known in real life). 

In this paper, we assume that the corrosivity of an 

environment can be associated with an index 𝐶𝐼𝐷𝑋 (much like 

a concentration of a particular corrosive agent in the air). 

Therefore, for modeling purposes, the material properties C 

and m can be expressed as functions of the stress ratio R and 

the proposed corrosion index 𝐶𝐼𝐷𝑋: 

𝐶 = 𝑔(𝑅, 𝐶𝐼𝐷𝑋) and 𝑚 = ℎ(𝑅, 𝐶𝐼𝐷𝑋) (8) 

 

where 𝑔(. )  and ℎ(. )  are unknown input-output 

relationships.  

Despite 𝑔(. )  and ℎ(. )  being unknown functionals, their 

forms are bounded by the physical constraints illustrated in 

Figure 3 and Eq. (6). As shown in Figure 3, as the 

environment corrosivity becomes more aggressive 𝐶  value 

increases while 𝑚  value decreases. In this study, the 

corrosivity is expressed in terms of a corrosivity index 𝐶𝐼𝐷𝑋 

that essentially controls the interpolation between the two 

curves in Figure 3. From Eq. (6) it can be inferred that from 

stress ratio 𝑅 within the range 0 < 𝑅 < 1, the 𝐶 value will 

increase as 𝑅  increases, if 0 < 𝛾 < 1 . Equation 6 also 

implies that 𝑚 is not a function of the stress ratio 𝑅. Hence, 

regardless of its form, 𝑔(. )  and ℎ(. )  must obey these 

constraints. 

 

 

Figure 3. Paris' law coupon data (adapted from coupon tests 

presented by Menan and Henaft, 2010). For pure air C = 

5.008𝑥10−10 and m = 3.859. For sodium chloride (NaCl) 

3.5% solution, C = 4.577𝑥10−8 and m = 1.853. 

 

With that, we propose the repeating RNN cell illustrated in 

Figure 4 to model corrosion-fatigue crack growth. While we 

maintain the physics-based implementation of the Walker 

model, we allow for the deep neural network to learn the 

dependence between the inputs stress ratio and corrosivity 

index and the output coefficients of the Paris’ law. Since the 

damage increment in non-corrosive cycles is purely 

mechanical, in practice, the neural network is working as a 

bias corrector compensating for the effect of corrosive cycles.  

3. CASE STUDY 

3.1. Synthetic Airplane Fleet Data 

Consider a hypothetical control point on the underside of the 

airplane wings in Figure 5. For simplicity, we assumed the 

airplane was designed to fly the l0 flight types and 10 

missions presented in Table 1 and Table 2, respectively. 
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Figure 4. Proposed RNN cell for corrosion-fatigue crack 

propagation. MLP stands for multilayer perceptron. 

 

 

 

Figure 5. Control point on the airplane wing underside.  

 

Now consider that: 

 An original equipment manufacturer, airline company or 

service provider maintains a large aircraft fleet 

(hundreds to thousands). Here, we consider a fleet of 100 

airplanes. 

 Each airplane in the fleet flies, on average, 8 flights per 

day. Considering that each airplane is designed to endure 

40,000 flights, the expected useful life of this panel is 

approximately 14 years. 

 The panels are made of Al 2024-T3 alloy (see Figure 3 

for material properties) with 𝑎0 = 0.5 𝑚𝑚 and 𝑎𝑚𝑎𝑥 =
20 𝑚𝑚. 

 Inspection of control points is part of the scheduled 

maintenance activities. Here, we arbitrarily consider that 

the first inspection data is available for part of the fleet 

after 20,000 flights. 

Figure 6 shows the evolution of fatigue crack growth under 

purely mechanical loading (i.e., disregarding the effect of 

corrosion). When corrosion is not considered, the 20,000 

flight inspection is expected to return fatigue crack lengths 

below 1 mm. 

3.2. Corrosion-fatigue 

Let us assume that the original equipment manufacturer, 

airline companies, or service provider was not expecting to 

observe corrosion-fatigue failure in the fleet. However, due 

to unforeseen circumstances, the fleet is exposed to corrosive 

cycles at take-off and landing. This represents, on average, 

5% of the total number of cycles in one mission (we 

considered that loads of type E and F are related to take-off 

and landing, respectively, and thus are subjected to 

corrosion). In this study, we penalize these cycles by 

accumulating damage using curves that are between air and 

sodium chloride (NaCl) 3.5%. The exact curve will depend 

on a corrosivity index 𝐶𝐼𝐷𝑋 (which essentially controls the 

interpolation between the two curves). When 𝐶𝐼𝐷𝑋 = 0, we 

use the curve for air. When 𝐶𝐼𝐷𝑋 = 1, we use the curve for 

NaCl 3.5%. 

 

 

Figure 6. Fatigue crack growth over time (without the effect 

of corrosion). 

 

Table 3 shows the 𝐶𝐼𝐷𝑋 for the 10 distinct airports considered 

in this study. Figure 7 illustrates the crack length envelope, 

i.e., the history for the lowest and largest crack lengths in the 

fleet for each scenario (purely mechanical fatigue and 

corrosion-fatigue). It is clear how even the few corrosive 

take-offs and landing cycles can accelerate damage 

accumulation. 

 

3.3. Physics-informed Neural Network Design 

We consider the following information is available: 

 For every airplane in the fleet: we consider the physics-

informed neural network to have full visibility of its 

inputs on every cycle (in real-world applications, this is 

a considerable task by itself). This means that at each 

flown mission, far-field cyclic stresses, stress ratio, and 

airport corrosion index are known and treated as inputs. 

 For part of the fleet: crack length observed after 20,000 

flights.  
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Table 1. Flight type load matrix distribution and related 

normalized minimum and maximum stresses (adapted from 

De Jonge et al., 1973). The stresses are given in MPa. 

Load magnitude 

 A B C D E F 

𝑺𝒎𝒊𝒏 0.10 4.25 8.25 12.25 16.25 20.25 

𝑺𝒎𝒂𝒙 52.15 48.10 44.0 40.0 36 32 

Load frequency 

Flight 

type 

A B C D E F 

I 2 2 3 5 13 30 
II 2 2 2 2 12 29 
III 1 2 2 2 12 29 
IV 1 1 2 2 12 29 
V 1 1 1 2 12 29 
VI 0 1 1 2 12 29 
VII 0 0 1 2 12 29 
VIII 0 0 0 2 12 29 
IX 0 0 0 0 1 7 
X 0 0 0 0 0 3 

 

Table 2. Mission mix configuration (flight type probability 

per mission). 
 Flight type 

Mission I II III IV V 

1 5. 10−5 7.5 10−5 1. 10−3 2.4 10−3 1.1 10−2 

2 2.5 10−5 2.5 10−5 1.2 10−3 1.5 10−3 6.75 10−3 

3 0 0 1.3 10−3 2.3 10−3 1.6 10−2 

4 0 5. 10−5 9.5 10−4 2.5 10−3 8.5 10−3 

5 0 0 1.2 10−3 2.3 10−3 6.  10−3 

6 1. 10−4 2.5 10−5 7.5 10−4 2.3 10−3 6.13 10−3 

7 0 0 0 2.3 10−3 7.3 10−3 

8 2.5 10−5 0 1. 10−3 2.5 10−3 1.  10−3 

9 0 7.5 10−5 7.5 10−4 7.7 10−3 1.1 10−2 

10 7.5 10−5 0 7.5 10−4 2.4 10−3 6.25 10−3 

Flight type 
Mission VI VII VIII IX X 

1 0.01 0.095 0.15 0.248 0.4824 

2 0.025 0.035 0.155 0.273 0.5025 

3 0.025 0.025 0.105 0.273 0.5530 

4 0.013 0.095 0.055 0.323 0.5030 

5 0.015 0.045 0.105 0.2975 0.5278 

6 0.015 0.045 0.08 0.3975 0.4528 

7 0.015 0.070 0.055 0.3225 0.5278 

8 0.02 0.02 0.12 0.285 0.5528 

9 0.025 0.025 0.055 0.2225 0.6528 

10 0.005 0.05 0.08 0.2725 0.5828 

 

Table 3. Airport corrosion index values. 

 Airport 

 A B C D E 

𝐶𝐼𝐷𝑋 0.517 0.389 0.361 0.545 0.781 

 F G H I J 

𝐶𝐼𝐷𝑋 1 0.125 0.58 0.608 0.844 

 

With that information, we proceed to build a hybrid physics-

informed neural network model for corrosion-fatigue. In this 

model, there are two multilayer perceptrons (MLPs), as 

shown in Figure 4. Table 4 and Table 5 detail the multilayer 

perceptrons used in this work. We decided to use these 

architectures to illustrate the ability to fit a neural network 

with a large number of trainable parameters. No attempt was 

made to further simplify the multi-layer perceptron. In 

practical applications, we believe reducing the model is worth 

pursuing, as it could potentially lead to a more manageable 

number of trainable parameters without sacrificing accuracy. 

 

 

 

(a) Fleet crack propagation envelope at 40,000 flights. 

 

(b) Fleet crack envelope at 7th year. 

    Figure 7. Fleet exposed only to mechanical fatigue vs 

fleet exposed to the described corrosion-fatigue conditions, 

a) crack envelope of the fleet considering 5% of corrosive 

loads in take-off and landing, and 14 years of operation, b) 

crack envelope in the 7th year, when the inspection 

campaign is carried. 
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Table 4. Paris' law exponent 𝑚 layer details. The first 

column addresses the type of layer used in the multilayer 

perceptron. A “dense” layer is a fully connected perceptron 

(i.e., all the inputs are connected to each neuron). The 

second column refers to the number of neurons (i.e., 

outputs) on each layer. The third column shows the number 

of parameters (weights and biases) yielded by each layer. 

Finally, the fourth column specifies if those parameters are 

tuned in the training stage. The last column specifies the 

activation function of each layer. Dense #0 is responsible to 

scale the layer inputs. Dense #1 to #3 are regular 

perceptrons. There are 91 trainable parameters and 6 non-

trainable parameters. 

Layer 
Output 

shape 
#params Trainable Activation 

Dense #0 (None,2) 6 N None 

Dense #1 (None,10) 30 Y None 

Dense #2 (None,5) 55 Y None 

Dense #3 (None,1) 6 Y None 

 

Table 5. log10 𝐶 layer details. The first column addresses 

the type of layer used in the multilayer perceptron. A 

“dense” layer is a fully connected perceptron (i.e., all the 

inputs are connected to each neuron). The second column 

refers to the number of neurons (i.e., outputs) on each layer. 

The third column shows the number of parameters (weights 

and biases) yielded by each layer. Finally, the fourth column 

specifies if those parameters are tuned in the training stage. 

The last column specifies the activation function of each 

layer. Dense #0 is responsible to scale the layer inputs. 

Dense #1 to #3 are regular perceptrons. There are 1205 

trainable parameters and 12 non-trainable parameters 

Layer 
Output 

shape 
#params Trainable Activation 

Dense #0 (None,2) 6 N None 

Dense #1 (None,40) 120 Y elu 

Dense #2 (None,20) 820 Y elu 

Dense #3 (None,10) 210 Y elu 

Dense #4 (None,5) 55 Y elu 

Dense #5 (None,1) 6 Y elu 

 

The constructed MLPs take two inputs (stress ratio and 

corrosivity index) and provide one output each. 

Unfortunately, optimizing all the deep neural network 

parameters can be a challenging task. Randomly initialized 

                                                           
* 
www.tensorflow.org/api_docs/python/tf/keras/optimizers/R

MSprop  

weights can be far away from the “optimum” values that 

would produce an accurate model (or to say the least, make 

the training process difficult to converge). Therefore, we 

propose a systematic approach to initialize the weights and 

biases of this neural network model. We propose constructing 

a simple linear plane representation of the input-output 

relationship: 

𝑦 =  𝛼0 + 𝛼1𝑥1 + 𝛼2𝑥2 (9) 

where, 𝑥𝑖 are normalized inputs, and 𝑦 is the output. 

The coefficients are initialized using engineering judgment. 

For example, we can assume that 𝐶 increases with stress ratio 

and corrosivity index. For illustration purpose, one random 

plane is plotted against the actual input-output relationship in 

Figure 8. 

The RNN is fitted with observations for inputs throughout the 

time series and observations for crack length only at the 

inspection (besides the initial crack length). Note that the 

output of neither MLPs is observed (ever). Instead, it is the 

crack length that is used in the loss function: 

𝐿 =
(𝒂𝑂𝐵𝑆 − 𝒂𝑃𝑅𝐸𝐷)𝑇(𝒂𝑂𝐵𝑆 − 𝒂𝑃𝑅𝐸𝐷)

𝑁𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒𝑠

 (10) 

where 𝑁𝑎𝑖𝑟𝑝𝑙𝑎𝑛𝑒𝑠  is the number of airplanes with observed 

crack length (inspection data). 

Table 6 describes the selected training parameters for the 

MLPs and for the RNN. We use the mean squared error 

(MSE) as the loss function used for the pretraining (i.e., 

initialization) of the MLPs and Eq. (10) for the training of the 

RNN. In all three cases, we used the RMSprop* optimizer. 

Learning rates and number of epochs vary with each case (the 

final values were obtained after we repeated the fitting 

process several times). 

3.4. Replication of results 

Our implementation is all done in TensorFlow †  (version 

2.0.0-beta1) using the Python application programming 

interface. In order to replicate the results presented here, the 

interested reader can download the codes and data. First, 

install the PINN python package (base package for physics-

informed neural networks used in this work) available at 

Viana et al (2019). The required datasets are uploaded in a 

Harvard Dataverse repository available at Dourado and 

Viana, (2019a). Python scripts demonstrating the proposed 

framework (with scripts implemented the MLP and RNN 

training as well as the RNN prediction processes) can be 

found in Dourado and Viana (2019b).  

† www.tensorflow.org 
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Table 6. Training parameters description for log10 𝐶 MLP 

layer, n MLP layer and overall RNN. 

 Loss 

function 

Optimizer Learning 

Rate 

Epochs 

MLP -

log10 𝐶 

MSE RMSprop 10−3 50 

MLP - n MSE RMSprop 10−3 10 

RNN Eq. (10) RMSprop 10−6 250 

 

 

 

(a) log10 𝐶 surfaces 

 

(b) 𝑚 surface. 

Figure 8. Initial and actual surfaces for both MLPs. 

 

4. RESULTS AND DISCUSSION 

4.1. Recurrent Neural Network (RNN) training. 

Using Eq (9) we derived initial guesses for the MLPs 

described in Table 4 and Table 5, by the planes shown in 

Figure 8. With this initial guesses, the MLPs yields 

predictions for log10 𝐶 and n as illustrated in Figure 9. As we 

explained in Section 3.3, this is done to avoid random 

initialization of the MLP, which we found to be detrimental 

to the RNN training. It is worth mentioning that Figure 9 

predictions are just illustrative since at this point the RNN 

training has not been performed yet. As previously addressed, 

this procedure is performed with the sole purpose of 

generating an initial estimate for the RNN weights and bias 

values.  

Based on this starting condition, the RNN training is 

performed considering the available crack length data from 

the synthetic fleet inspection campaign. Different 

configurations could be considered in the synthetic 

inspection campaign, but for simplicity we considered that 

20% of the fleet (20 aircrafts randomly selected) undergoing 

inspection after 20.000 flights (approximately at the  7th  year 

of operation). As previously mentioned, we conceived the 

proposed RNN as having full visibility of its inputs and 

partial visibility of outputs. Hence, in the training stage the 

RNN   receives information regarding load stresses, stress 

ratio and corrosion index of every cycle on each flight of the 

selected 20 aircrafts, and only the initial and final crack 

lengths. The data regarding the other 80% of the fleet is used 

for testing the RNN response. These results are discussed in 

the next section. 

Figure 10 illustrates the results of the RNN training 

considering the available inspection data. As can be seen, the 

initial planes provided a relatively good initial guess for the 

RNN training. It can be noticed that after the training the 

RNN crack length predictions match with the crack length 

data (actual in Figure 10a). This is indicative of the RNN 

optimization convergence. Another indicative of 

convergence is the crack propagation history shown in Figure 

10b. For the considered sample, the RNN was able to 

accurately backtrack the damage accumulation of the aircraft 

yielding the presented crack histories. However, an important 

feature can also be noticed in Figure 10. The provided 

training data has an inherent bias highlighted by the 

observable clusters seem in Figure 10a. This feature is due to 

the mission mix distribution in the training data. The 

considered data were mainly formed by aircrafts operating 

with a predominant mission. This bias might not accurately 

represent the fleet actual behavior and could lead to 

unexpected predictions by the RNN. 
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4.2. Recurrent Neural Network (RNN) damage diagnosis 

and prognosis. 

After the RNN is properly trained the resulting model is used 

to perform the fleet diagnosis and prognosis. For fleet 

diagnosis, we mean to ascertain if the RNN can accurately act 

as a bias estimator and properly handle the corrosion effects 

in the crack length values of the entire fleet. We carried this 

analysis in the same year that the fleet was inspected (20,000 

flights). Since in this contribution we are considering a 

synthetic fleet, the crack length values of each aircraft can be 

obtained at any instant. Figure 11 presents the results of the 

fleet-wide diagnosis analysis. 

 

If the fleet was performing as designed, i.e. if the aircrafts 

were operating in a non-corrosive environment subjected 

only to mechanical fatigue, crack lengths in the range of 0.80 

and 0.90 mm would be expected (blue squares in Figure 11). 

Considering the corrosion-fatigue mechanism, the crack 

length values revolve around 0.95 and 1.10 mm (magenta 

dots in Figure 11), an increment of approximately 20%. As 

can be seen in Figure 11, the RNN was able to act as a bias 

estimator, compensating the lack of corrosion modeling in the 

damage estimation. It is noticeable that the RNN predictions 

capture the overall trend of the corrosion-fatigue crack 

length. Despite being underestimating the crack length value 

for a few aircrafts, the RNN is still predicting values far from 

the mechanical fatigue results. This is a clear indication that 

even in the worst scenarios the RNN is still acting as bias 

estimator and compensating the corrosion effects.  

 

Our goal in this contribution was to evaluate the use of a 

hybrid RNN as a bias estimator compensating the lack of 

corrosion modeling in a fatigue damage accumulation 

problem. The obtained results for the diagnosis analysis 

indicates that the research goal was achieved. The RNN is 

clearly compensating the lack of corrosion damage 

information and even in the worst predictions is far from the 

mechanical fatigue responses. 

Another important feature that we evaluated was the RNN 

ability to accurately forecast damage accumulation. For this 

end, the proposed PINN has to provide a prognosis of future 

fleet crack propagation. At first, it might seem a simple task, 

but it is important to point out the daunting challenge behind 

this analysis. The PINN model is recursive accumulating 

damage at each cycle with MLPs compensating the corrosion 

bias. The crack propagation itself is a non-linear problem, 

with the crack length growing exponentially with each new 

cycle. The MLPs are calibrated with a single observation 

(crack length data after 20,000 flights). At that instant, the 

exponential growth of the crack is not as significant as in the 

aircraft final missions (missions closer to the intended 

MTTF). Basically, as the fleet ages, the crack propagation 

becomes more aggressive and the corrosion effects have a 

higher impact.  Hence, a small deviation can lead to very far- 

off estimates of future crack lengths. A representation of the 

prognosis task is illustrated in Figure 12.    

 

(a) log 𝐶 prediction vs actual. 

 

(b) 𝑛 prediction vs actual. 

Figure 9. MLP prediction vs actual spread before RNN 

training, meaning that only MLP were trained with the 

referred initial planes, but no crack length data was used, (a) 

log 𝐶, (b) n.  

 

Figure 13 presents the results of the fleet-wide prognosis 

analysis. As in the diagnosis analysis, the proposed PINN 

model is compensating the corrosion bias in the damage 

accumulation, accurately capturing the trend of the fleet crack 

length values after 40,000 flights. It seems that for smaller 

cracks values (cracks of around 5mm) the RNN was able to 

forecast the damage accumulation process with high 

accuracy. For cracks higher than 10 mm the RNN is either 

under or over predicting the crack final value. However, this 

is not an alarming issue. For cracks of this range, crack 

propagation is already in a highly exponential behavior. In 

these stages, a few cycles can lead to very significant crack 

growth hindering the RNN ability to determine the crack 
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actual value. Nonetheless, it is safe to assume that with the 

proposed PINN model an operation engineer would be able 

to satisfactorily track the crack propagation in the fleet. 

 

 

 

(a) RNN training response considering 20 aircrafts. 

Actual values are related to the crack length data 

 

(b) RNN training history response given the considered 

20 aircrafts. 

 

Figure 10. RNN training responses considering crack length 

data of 20 aircrafts inspected at 7th year of operation: (a) 

predicted vs actual response for the considered sample; (b) 

RNN crack propagation history for the given sample. 

 

Figure 11. Fleet-wide diagnosis, where the black crosses 

illustrate the RNN prediction for every aircraft on the fleet; 

the blue squares illustrates crack length after 20,000 flights 

if the fleet is only being affected by mechanical fatigue; and 

the magenta dots shows crack length value of each aircraft 

of the fleet under the combined effects of corrosion-fatigue. 

   

 

 

 

Figure 12. RNN prognosis task, where the RNN as to 

estimate the fleet crack propagation being calibrated only 

once with the inspection data after 20,000 flights.  
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Figure 13. Fleet-wide prognosis. Black crosses illustrate the 

RNN prediction for every aircraft on the fleet; the blue 

squares illustrate the expected crack length after 40,000 

flights if the fleet is only being affected by mechanical 

fatigue, and the magenta dots shows the actual crack length 

value of each aircraft of the fleet under the combined effects 

of corrosion-fatigue.   

 

5. CONCLUSIONS AND FUTURE WORK 

In this contribution, we proposed a novel physics-informed 

neural network model (illustrated in Figure 4) to be used to 

compensate for a lack of information in corrosion-fatigue 

damage accumulation. The proposed framework was derived 

such as a purely mechanical fatigue model (for instance Paris’ 

law) can be used to assess crack propagation in corrosive 

environments. Two artificial neural networks are derived and 

trained to account for the corrosion effects on the fatigue 

model constants. A simple numerical experiment was 

designed to evaluate the effectiveness of the proposed 

methodology, in which: 

 A fleet of 100 aircrafts operating between ten 

different missions and ten distinct airports is 

considered; 

 The different missions introduce load variability 

while the different airports emulate distinct 

corrosive environments; 

 A physics-informed recurrent neural network is 

formulated with two multi-layer perceptrons (MLP) 

modeling the corrosion effects on the fatigue model 

exponents; 

 The MLPs act as bias estimators compensating the 

corrosion effect on the fatigue model estimated 

damage. 

The presented results demonstrate that: 

 The proposed physics-informed recursive neural 

network can accurately model corrosion-fatigue 

damage accumulation; 

 The proposed model can successfully perform a 

fleet-wide diagnosis; 

 As defined, the proposed framework can 

satisfactorily forecast damage accumulation and be 

used for fleet-wide prognosis. 

The results obtained were promising and future work will 

focus on: 

 Improve physics of failure by including pit growth 

in the cumulative damage; 

 Ascertain the effects of different training sets in the 

model performance; 

 Evaluate the effects of material properties and other 

sources of uncertainty in the model prediction; 

 Evaluate possible risk mitigation procedures such as 

fleet recommissioning and assets repair, 

replacement. 
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