
 

1 

Integrating Model-Based and Data-Driven Simulator 
for Health Management of a Reusable Rocket Engine 

Daiwa Satoh1, Noriyasu Omata1, Miki Hirabayashi1, Seiji Tsutsumi1, Kaname Kawatsu2, and Masaharu Abe3 

1 Research Unit III, Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA),  
Sagamihara, Kanagawa, 252-5210, Japan 

satoh.daiwa@jaxa.jp 
omata.noriyasu@jaxa.jp 

m_hirabayashi@office.so-net.ne.jp 
tsutsumi.seiji@jaxa.jp 

2 Research Unit III, Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA), 
Tsukuba, Ibaraki, 305-8505, Japan 

kawatsu.kaname@jaxa.jp 

3 Aerospace Engineering Solution Division, Business Headquarters, Ryoyu Systems Co., Ltd., 
Nagoya, Aichi, 455-0024, Japan 

abe.masaharu@jaxa.jp 

 
ABSTRACT 

There is considerable need to generate large amounts of 
training data that include various operating conditions for 
fault detection and diagnosis with machine learning in a 
reusable rocket engine. A system-level simulation model has 
been developed in which reduced-order models are employed 
to simulate the global behavior of a reusable rocket engine. 
Although some components of the engine are not modeled at 
the system level due to their complexity, they are included 
among the items inspected during fault detection and 
diagnosis. This study has developed a regression model for 
simulating the behavior of such components based on the 
results of static-firing tests on a reusable rocket engine 
developed in Japan. The regression model used 
measurements that can be modeled by the system-level 
simulation and treated the ones that cannot be modeled as 
response variables. To identify the operating conditions, the 
explanatory variables are divided using the Gaussian mixture 
model in advance, and the Ridge regression models are then 
trained from the clustered explanatory variables on each 
cluster. This method reasonably predicts the response 
variables, even if the static-firing testing includes varying 
operating conditions such as the combustion phase with 
varied throttling and the chill-down phase. 

1. INTRODUCTION 

Many countries have developed reusable launch vehicles to 
cut launch costs. Although reusable launch vehicles need 
regular maintenance to maintain reliability, maintenance 
accounts for most of the launch cost. Four approaches can 
improve maintenance cost-cutting: a design methodology 
with long service life as a major consideration; a technique 
for evaluating remaining component lifetime; non-
destructive inspection technology; and fault detection and 
diagnostics. The authors focus on fault detection and 
diagnosis in this paper. Reusable launch vehicles need more 
launches to be operated more effectively. However, since 
rocket engines are complex and many sensors are needed to 
monitor the condition of the entire system, manual inspection 
is time consuming. Further, fault detection and diagnosis of a 
rocket engine must be finished quickly, so quick and reliable 
maintenance using only manual inspection has become no 
longer possible. 

To solve the issue, the Japan Aerospace Exploration Agency 
(JAXA) has developed techniques for fault detection and 
diagnosis (Kawatsu, 2019; Tsutsumi et al., 2019) for the 
Reusable Sounding Rocket (RSR), which was developed in 
Japan (Nonaka et al., 2011; Sato et al., 2014; Kimura et al., 
2016). The techniques require vast amounts of training data. 
Moreover, it is difficult to the anticipate launch conditions 
because of changing weather and flight conditions. Static-
firing tests take a lot of time and are expensive, so preparing 
training data using only static-firing tests is also unrealistic. 
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The authors have developed a System-Level Simulation 
(SLS) model to generate training data instead of relying on 
static-firing tests (Sato et al., 2019). The SLS model 
simulates the global behavior of an RSR engine by employing 
reduced-order models. The simulation results in steady-state 
are highly accurate and obtained by parameter estimation 
with data assimilation. By changing valve sequences and the 
pressure and temperature of the tanks, the SLS model can 
generate time series data under a variety of operating 
conditions. Many model-based approaches for various 
products in diverse fields have already been studied 
(Belapurkar et al., 2011; Frank et al., 2016; Zolghadri et al., 
2016; Poon et al., 2017; Sobie et al., 2018; Chowdhury et al., 
2019). These studies modeled their targets numerically and 
used their models for fault detection and diagnosis, but the 
scope of the studies was limited to behaviors that can only be 
modeled by the simulation model. In engines, however, there 
are many parts affected by unknown, complicated physical 
phenomena. The behavior of sensors installed in such parts 
cannot be simulated by the SLS model. Half of the sensors 
used for fault detection and diagnosis measure such physical 
phenomena. This study suggests a hybrid method that 
complements the training data with a regression model using 
sensors that can be modeled by the SLS as explanatory 
variables and using those that cannot be modeled as response 
variables. 

2. OVERVIEW OF THE RSR ENGINE 

2.1. Specification and Operating Conditions 

Figures 1 and 2 are a static-firing test and a system diagram 
of the RSR engine. An expander bleed cycle is employed in 
the RSR engine, and liquid oxygen (LOX)/liquid hydrogen 
(LH2) used as the propellant. The fuel turbopump (FTP) and 
oxidizer turbopump (OTP) are driven by high-temperature 
hydrogen after cooling a combustion chamber. The pumps in 
the turbopumps feed LH2 or LOX by rotating each turbine. 
The RSR engine generated 40 kN at 100% thrust at sea level. 
Chamber pressure and specific impulse were 3.4 MPa and 

320 seconds at 100% thrust. This engine was designed for a 
launch vehicle capable of vertical takeoff and landing. Also, 
reignition and throttling from 40 to 100% are possible with 
the opening ratio of flow control valves changing. The static-
firing test was conducted over 50 times, and the engine was 
overhauled a few times during the test campaign. 

Figure 3 is the time series of discharge pressure of an inducer 
and chill-down valve signal. The x-axis is transformed into a 
range between 0 and 100; 0 and 100 indicate the beginning 
and end of the sequence respectively. The y-axis is 
normalized by the min-max normalization. The x-axes and y-
axes of all the graphs shown below are transformed by the 
same way in this paper. The sequence in this case consists of 
five combustion phases and four chill-down phases. Various 
sequences were conducted in the test campaign, but this study 
applies the sequence the test campaign conducted the most 
often. Figure 4 is a schematic of LH2 flow around the pump. 
The pump consists of a two-stage centrifugal pump with an 
inducer and connects with a turbine along an axis, which is a 
rotating shaft. The red circle marked “Res1” in Fig. 4 
indicates the pressure sensor that measures the inducer 
discharge pressure shown in Fig. 3. 

During the combustion phase, LH2 is fed by driving the FTP. 
Since the main valve opens, the chill-down valve and the 
bearing chill-down valve close, LH2 is circulated through the 
bearings by the FTP (Fig. 4 (a)). LH2 flowing through the 
bearing between the 2nd-stage impeller and the turbine 
returns to the bearing between the 1st-stage and 2nd-stage 
impellers through the inside of the hollow shaft. On the other 
hand, during the chill-down phase, the propellant is moved 
by only tank pressure because the FTP does not operate. 
Since the main valve closes, the chill-down valve repeatedly 
opens and closes, and the bearing chill-down valve opens 
after engine cutoff, then LH2 flows to cool the pump and 
bearings (Fig. 4 (b)). Opening and closing the chill-down 

Figure 1. Static-firing test of RSR engine. 
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valve repeatedly agitates the LH2 in the FTP and cools the 
pump and bearings effectively. As shown in Fig. 4, the stream 
of LH2 differs between the combustion and chill-down 
phases and is greatly affected by the valves. 

2.2. Sensors 

Engine performance in the static-firing test campaign was 
measured by over 350 sensors including measurements of 
ground equipment. This study used 60 sensors mounted on 
the engine: 26 pressure sensors, 26 thermocouples, four 
flowmeters, two rotation speed sensors, and two axial 
displacement sensors for the turbopumps. The system 
diagram in Fig. 2 indicates the main pipes of the RSR engine. 
The SLS can simulate the behavior of 30 sensors mounted on 
these pipes. The sensors that can be modeled by the SLS are 
listed in Table 1. The remaining 30 sensors, mostly on the 

turbopumps measured pressure and temperature around the 
bearings. 

The bearings can rotate smoothly while the liquid propellant 
flows around them. If the propellant is vaporized because of 
some problem during turbopump operation, the bearings do 
not work, and severe damage to the turbopumps will result. 
Res2 and Res3 in Fig. 4 are the thermocouples for monitoring 
this. Res2 measures the temperature on the outside surface of 
the bearings, and Res3 measures the temperature of LH2 
flowing around the bearings. The developed SLS model 
cannot simulate the flow indicated by blue arrows in Fig. 4 
because flow channels are complicated and, instead, regards 
the area enclosed by a green box as one pump component. 
Res1, which measures the discharge pressure of an inducer, 
is included in the component. Therefore, Res1, Res2, and 
Res3 cannot be simulated by the SLS model. 

Figure 4. Schematic of LH2 flow around pump. 

(a) Flow of LH2 during combustion phase (b) Flow of LH2 during chill-down phase 
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3. CREATION OF THE DATASET 

3.1. Procedure 

Figure 5 is an overview of the procedure for creating the 
dataset. The first step divides the static-firing test results into 
results from sensors that can be modeled by the SLS 𝑿𝑿 =
(𝒙𝒙1,⋯ ,𝒙𝒙𝑁𝑁𝑁𝑁) and from those that cannot 𝒀𝒀 = �𝒚𝒚1,⋯ ,𝒚𝒚𝑁𝑁𝑁𝑁�. 
𝒙𝒙  and 𝒚𝒚  are the time series data of the sensors, and 𝒙𝒙𝑖𝑖 =
(𝑥𝑥𝑖𝑖1,⋯ , 𝑥𝑥𝑖𝑖𝑇𝑇)𝑡𝑡  and 𝒚𝒚𝑗𝑗 = �𝑦𝑦𝑗𝑗1,⋯ ,𝑦𝑦𝑗𝑗𝑇𝑇�

𝑡𝑡
, respectively. 𝑥𝑥 , 𝑦𝑦  are 

instantaneous values of the time series data, and subscript 𝑖𝑖 ∈
[1,𝑁𝑁𝑥𝑥] , 𝑗𝑗 ∈ [1,𝑁𝑁𝑦𝑦] , and superscript 𝑡𝑡 ∈ [1,𝑇𝑇]  are the 
number of 𝑿𝑿 = ℝ𝑇𝑇×𝑁𝑁𝑁𝑁, 𝒀𝒀 = ℝ𝑇𝑇×𝑁𝑁𝑁𝑁, and time, respectively. 
To train the regression model, 𝑿𝑿  and 𝒀𝒀  are used as the 
explanatory variable and response variable. Then, 𝑀𝑀 
explanatory variables �𝑿𝑿�1,⋯ ,𝑿𝑿�𝑀𝑀�  are created by the 
developed SLS model  𝑔𝑔(𝜽𝜽)  with 𝚯𝚯 = (𝜽𝜽1,⋯ ,𝜽𝜽𝑀𝑀) . 𝚯𝚯  is 
created by the Monte-Carlo method based on model 
parameter 𝜽𝜽, fitted to the static-firing test results with data 
assimilation (Sato et al., 2019). 𝑀𝑀  response variables 
�𝒀𝒀�1,⋯ ,𝒀𝒀�𝑀𝑀�  are obtained by the trained regression model 
𝑓𝑓(𝑿𝑿). Finally, by combining �𝑿𝑿�1,⋯ ,𝑿𝑿�𝑀𝑀� and �𝒀𝒀�1,⋯ ,𝒀𝒀�𝑀𝑀�, 
the dataset 𝒟𝒟 = ��𝑿𝑿�1,𝒀𝒀�1�,⋯ , �𝑿𝑿�𝑀𝑀,𝒀𝒀�𝑀𝑀�� is obtained. 

This study uses 24 cases out of over 50 cases of static-firing 
test results to train the regression model, and the gross 
number of 𝑇𝑇 is approximately 650,000. The test data for the 
regression model is the time series shown in Fig. 3, and its 𝑇𝑇 
is approximately 30,000. 𝑁𝑁𝑥𝑥  is 41 consisting of the 30 
sensors listed in Table 1 and signals of valves, and 𝑁𝑁𝑦𝑦 has 
three members: Res1, Res2, and Res3 shown in Fig. 4. 

3.2. Regression Model 

The sequence in Fig. 3 is strongly affected by the valve 
behavior. The flow direction around the pump in Fig. 4 is 
different between the combustion and chill-down phases as 
well. Res2 in Fig. 4 measures the temperature of the outside 
surface of the bearing, not the fluid temperature. Res3 
measures the fluid temperature after it flows through the 
impellers and complicated channels, and it is affected by heat 
transfer from thermal mass especially during the chill-down 
phase. This study mainly aims to investigate whether the 
regression model can complement the dataset using a simple 
linear regression model, Ridge regression, but plans on using 
a nonlinear regression model to improve the prediction 
accuracy further. 

3.3. Clustering for Time-Varying Operating Conditions 

The main purpose of the static-firing test campaign was to 
determine an operating point that would allow the engine to 
operate normally. Therefore, this increases the amount of 
data for the combustion phase. Even if a nonlinear regression 
model is used, the usual regression models tend to value the 
major phase having the most data. Although a minor phase 
with a limited amount of data tends to be neglected, it is ideal 
for practicing fault detection and diagnosis for sequences that 
include both the major and minor phases. To prevent any bias 
caused by a difference in the amounts of data and the physical 
phenomena shown in Fig. 4, 𝑿𝑿  is divided into clusters in 
advance, and regression models are individually trained on 
each clustered 𝑿𝑿 . The procedure for a training regression 
model is shown in Fig. 6. 

Initially, the static-firing test results are divided into training 
and test data, and 𝑿𝑿 of the training data is divided into 𝑁𝑁𝑁𝑁 

Table 1. Sensors that can be modeled by SLS. 
 

Number Sensor Number Sensor 
Exp1 Combustion pressure Exp16 Volumetric flow rate downstream of OTP 
Exp2 Pump discharge pressure of FTP Exp17 Rotation speed of FTP 
Exp3 Pump discharge pressure of OTP Exp18 Rotation speed of OTP 
Exp4 Pressure of mixer at low temperature side Exp19 Pump discharge temperature of FTP 
Exp5 Pressure of mixer at high temperature side Exp20 Pump discharge temperature of OTP 
Exp6 Inlet pressure of regenerative cooling Exp21 Inlet temperature of regenerative cooling 
Exp7 Outlet pressure of regenerative cooling Exp22 Outlet temperature of regenerative cooling 
Exp8 Turbine inlet pressure of FTP Exp23 Turbine inlet temperature of FTP 
Exp9 Turbine outlet pressure of FTP Exp24 Turbine outlet temperature of FTP 
Exp10 Turbine inlet pressure of OTP Exp25 Turbine inlet temperature of OTP 
Exp11 Turbine outlet pressure of OTP Exp26 Turbine outlet temperature of OTP 
Exp12 Pressure of oxidizer side injector Exp27 Temperature of fuel side injector 
Exp13 Pressure of fuel side injector Exp28 Temperature of oxidizer side injector 
Exp14 Volumetric flow rate upstream of FTP Exp29 Temperature of lower chill-down valve for LH2 
Exp15 Volumetric flow rate downstream of FTP Exp30 Temperature of lower chill-down valve for LOX 
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clusters. This study uses the Gaussian Mixture Model 
(GMM) as a clustering method as follows: 

 𝑝𝑝(𝑥𝑥) = �𝜋𝜋𝑐𝑐𝒩𝒩(𝑥𝑥|𝝁𝝁𝑐𝑐 ,𝜮𝜮𝑐𝑐)
𝑁𝑁𝑐𝑐

𝑐𝑐=1

 (1) 

 �𝜋𝜋𝑐𝑐

𝑁𝑁𝑐𝑐

𝑐𝑐=1

= 1 (2) 

where, 𝑁𝑁𝑁𝑁 is 20 and 𝑁𝑁 ∈ [1,𝑁𝑁𝑁𝑁]. The number of supposed 
phases according to operating conditions in the training data 
was around 20, so this study uses only 𝑁𝑁𝑁𝑁=20. Mixture 
weight 𝜋𝜋𝑐𝑐 , mean vector 𝝁𝝁𝑐𝑐 , and covariance matrix 𝜮𝜮c  are 
obtained by the EM algorithm. 

Then, 𝒀𝒀  is also divided into 𝑁𝑁𝑁𝑁  clusters by label 𝑳𝑳 =
(𝑙𝑙1,⋯ , 𝑙𝑙𝑇𝑇)𝑡𝑡 from the GMM, and the regression models are 
trained from the thus obtained clusters. The regularization 
parameter of the Ridge regression model is obtained when the 
R2 score is maximum in 5-fold cross validation. 𝒀𝒀�𝑐𝑐  is 
calculated by inputting 𝑿𝑿𝑐𝑐  divided by the GMM into the 
regression models trained on each cluster. Finally, the 
performance of the clustered regression models is evaluated 
by comparing the merged 𝒀𝒀�  with 𝒀𝒀  of the test data and 
evaluates it with the Root Mean Square Error (RMSE) as 
follows: 

 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �∑(𝒚𝒚 − 𝒚𝒚�)2

𝑛𝑛
 (3) 

 where 𝑛𝑛 is the number of data. 

4. PREDICTION RESULTS AND DISCUSSION 

4.1. Prediction without Clustering 

Figure 7 is the comparison between the static-firing test 
results and predictions of the Ridge regressor without 
clustering 𝑿𝑿 of the test data. The prediction of Res1 shown in 
Fig. 7 (a) generally agrees with the static-firing test results. 
Focusing on the area enclosed by a red box in Fig. 7 (a), 
however, the chill-down phase indicated by B and the 

Figure 5. Overview of procedure for creating dataset. 
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switching point of the phases indicated by T1 and T2 are not 
predicted well, as can be seen from Fig. 7(b). Since Res1 (see 
Fig. 4) is the sensor that measures the inducer discharge 
pressure, its behavior is similar to the rotation speed, the 
discharge pressure of the turbopump, and flow rate during the 
combustion phase. The behavior of other pressure sensors is 
also similar, so the prediction accuracy for Res1 is improved 
because such sensors are used as the explanatory variables for 
the regression models. Moreover, since a large number of 
data for the combustion phase is included in the test data as 
well, the training regression model values this phase. 

On the other hand, LH2 is fed by only tank pressure because 
the turbopump is stopped during the chill-down phase. The 

main valve closes, so its upstream fluid is strongly affected 
by the chill-down valve, but its downstream fluid is not 
affected. There are a few sensors whose behavior resembles 
that of Res1 during the chill-down phase. The number of data 
for the chill-down phase is smaller than that for the 
combustion phase, and the behaviors (such as valve 
operation) is different between the combustion and chill-
down phases. The training regression model is inadequate for 
the above reasons. 

Considering the prediction result for Res1, the regression 
model does not predict the behavior of the temperature Res2 
and Res3 well. Some peaks are observed in the prediction 
results during the chill-down phase, so it is found that 

Figure 7. Comparison between static-firing test results and prediction of Ridge regressor without clustering. 

(b) Enlarged view at red box in Fig. 7 (a) (a) Res1: inducer discharge pressure 

(d) Enlarged view at red box in Fig. 7 (c) (c) Res2: bearing surface temperature 

(f) Enlarged view at red box in Fig. 7 (e) (e) Res3: LH2 temperature around bearing 
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predicting the behavior of thermocouples is more difficult 
than the pressure sensor. When the turbopump is stopped and 
the propellant is stilled, the thermocouples are affected by 
heat from the outside and residual heat in the heat mass, such 
as pipes and pumps. The physical phenomena that affects the 
sensor behavior is the difference between the combustion and 
chill-down phases. Since the main valve closes during the 
chill-down phase, the explanatory variables for the behavior 
around the pump are limited. The chill-down phase behavior 
cannot be predicted by the regression model that values 
fitting the combustion phase. 

4.2. Prediction with Clustering 

Figure 8 is a comparison between the static-firing test results 
and prediction by the Ridge regressors with clustering 𝑿𝑿 of 
the test data. The gray curves indicate the static-firing test 
result, and the colored curves indicate the prediction result. 
The color is changed for each cluster according to the legend 
at the top of Fig. 8 and common in Fig. 8. Note that clusters 
1-4 expressed by the similar blue in Fig. 8 (b) are different. 
Although only four clusters are indicated here to distinguish 
the similar blue clusters, this sequence consists of more than 
four clusters as shown in Fig. 8. Focusing on the divided 
points of each cluster, the sequences are divided according to 
the steady state, transient state, and valve operation. The 
RMSE of the prediction results are listed in Table 2. All the 
response variables are improved by clustering. 

Figure 8 (a) shows that the prediction result for Res1 agrees 
with the static-firing test result. As shown in Fig. 8 (b), an 
enlarged view of the area enclosed by the red box in Fig. 8 
(a), the prediction accuracies for the switch of phases and the 
chill-down phase are improved. By individually training the 
regression models on each cluster, the minor chill-down 
phase had a small number of data and the major combustion 
phase had a large number of data, and were both valued in 
training the regression model. Switching the regression 
models predicts response variables well even if the physical 
phenomenon and the explanatory variable of each phase are 
different. As shown in Fig. 7 (b)-(f), the prediction results for 
Res2 and Res3 do not fit the static-firing test results even in 
the combustion phase, however, the accuracies of Res2 and 
Res3 in Fig. 8 (b)-(f) are also improved by clustering. 
Focusing on the chill-down phase in Fig. 8 (d), the peaks 
shown in Fig. 7 (c) are prevented and the tendency of the 
prediction result is improved, but the prediction accuracy is 
worse than for Res1. On the other hand, the prediction result 

for Res3 shown in Fig. 8 (e) generally fits the static-firing test 
result and it can predict not only the steady state during the 
combustion phase but also transient states, such as startup and 
cutoff. The chill-down phase is also predicted accurately, as 
shown in Fig. 8 (f). As mentioned in Section 2.2, the 
measurement point of Res3 differs from that of Res2. As 
shown in Fig. 4, Res2 measures the outside surface 
temperature of the bearing, which is changed by the heat 
transfer from LH2 and the bearing friction, not the fluid 
temperature directly, while Res3 measures the fluid 
temperature. The temperature change at Res3 is based more 
on simple physical phenomena than is Res2, so the prediction 
accuracy for Res3 is better than Res2. 

One method to improve the prediction accuracy for Res2 is 
to change the clustering method. Before training the 
regression model, 𝑿𝑿 is divided into clusters by the GMM in 
order to reduce the bias that values a major phase with a large 
number of data. However, since the number of the clusters is 
a hyper-parameter of the GMM, there is the possibility that a 
minor phase with a small number of data could be classified 
in a neighboring cluster of a major phase, depending on the 
set cluster number. For the static-firing test result indicated 
by the gray curve in Fig. 8 (c), the temperature in the 
combustion and chill-down phases both gradually decrease. 
Although the tendency of the first chill-down phase 
particularly differs from the fourth, the GMM classifies them 
into the same cluster. Since the tendencies between phases in 
Res1 and Res3 are almost the same, the prediction accuracy 
for Res2 seems to be improved by dividing the first chill-
down phase as another cluster. Another method to improve 
the prediction accuracy for Res2 is to apply a nonlinear 
regression model. As mentioned above, since the Res2 is 
based on complicated physical phenomena, a linear 
regression model has trouble predicting such behavior. The 
linear regression model can predict the phase based on 
comparably simple physical phenomena, such as the 
combustion phase, so switching a linear and a nonlinear 
regression model according to each phase is effective in 
improving prediction accuracy. 

5. CONCLUSION 

For fault detection and diagnosis with machine learning, 
training data needs to be created for time-varying operating 
conditions. The authors have developed a system-level 
simulator that reasonably represents the global behavior of a 
reusable rocket engine. However, there are components that 
cannot be modeled by the system-level simulation, and they 
are also the targets of fault detection and diagnosis. The 
regression model was developed to complement the training 
data. Its explanatory variables are the sensors that can be 
modeled by the system-level simulation, and its response 
variables are the ones that cannot be modeled. The sequences 
of the reusable rocket engine consist of the various operating 
conditions, such as the combustion and chill-down phases. 
Training the regression model usually focuses on a major 

Table 2. RMSE of prediction result. 
 

Sensor RMSE 
without clustering with clustering 

Res1 0.01320 0.003709 
Res2 0.7764 0.4459 
Res3 0.9447 0.4386 
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phase represented by a large amount of data, so a regression 
model based on the major phase tends to neglect a minor 
phase having a small number of data. Moreover, physical 
phenomena can change drastically between phases according 
to changes in the flow field inside pipes and turbopumps and 
in valve behavior. To solve such issues, the explanatory 
variables are divided into clusters by the Gaussian mixture 
model. The Ridge regression model trained on each cluster 
predicts the static-firing test results complied under various 

operating conditions well. From the above, the present 
method is shown to combine system-level simulation and the 
regression model used to generate training data for fault 
detection and diagnosis. However, the prediction accuracies 
for some sensor behavior are insufficient. Since nonlinear 
phenomena are dominant in a reusable rocket engine, 
improving prediction accuracy by applying a nonlinear 
regression model will be valuable work for the future. 

Figure 8. Comparison between test results and prediction of Ridge regressor with clustering. 

(a) Res1: inducer discharge pressure (b) Enlarged view at red box in Fig. 8 (a) 

(c) Res2: bearing surface temperature (d) Enlarged view at red box in Fig. 8 (c) 

(e) Res3: LH2 temperature around bearing (f) Enlarged view at red box in Fig. 8 (e) 

A: Combustion, B: Chill-down

A B A B

Cluster 1

Cluster 2
Cluster 4

Cluster 3

Cluster 1

A: Combustion, B: Chill-down

A B A B

A: Combustion, B: Chill-down

A B A B
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