
Data-driven Residual Generation for Early Fault Detection with
Limited Data

Hamed Khorasgani1, Ahmed Farahat2, and Chetan Gupta3

1,2,3
Industrial AI Lab, Hitachi America, Ltd. R&D, Santa Clara, CA, 95054, U.S.A.

firstname.lastname@hal.hitachi.com

ABSTRACT

Traditionally, fault detection and isolation community has
used system dynamic equations to generate diagnosers and
to analyze detectability and isolability of the dynamic sys-
tems. Model-based fault detection and isolation methods use
system model to generate a set of residuals as the bases for
fault detection and isolation. However, in many complex sys-
tems it is not feasible to develop highly accurate models for
the systems and to keep the models updated during the sys-
tem lifetime. Recently, data-driven solutions have received
an immense attention in the industries systems for several
practical reasons. First, these methods do not require the ini-
tial investment and expertise for developing accurate models.
Moreover, it is possible to automatically update and retrain
the diagnosers as the system or the environment change over
time. Finally, unlike the model-based methods it is straight
forward to combine time series measurements such as pres-
sure and voltage with other sources of information such as
system operating hours to achieve a higher accuracy. In this
paper, we extend the traditional model-based fault detection
and isolation concepts such as residuals, and detectable and
isolable faults to the data-driven domain. We then propose an
algorithm to automatically generate residuals from the normal
operating data. We present the performance of our proposed
approach through a comparative case study.

1. INTRODUCTION

Deviations of system characteristics and parameters from
standard conditions are referred to as faults in the system
(Isermann & Balle, 1997). Faults can put the equipment op-
erators at risk, disrupt the manufacturing processes and cost
industries millions of dollars. Fault detection determines the
occurrence of a fault and the fault occurrence time in the sys-
tem. Subsequently, fault isolation determines the type and lo-
cation of the detected fault (Isermann & Balle, 1997). Timely
Fault Detection and Isolation (FDI) is critical for the system

Khorasgani et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

operators’ safety and can help them to prevent abnormal event
progression and reduce downtime and productivity losses.
Traditionally, prognostics and health monitoring engineers
use system models to monitor systems and generate alarms
when the system deviates from its normal operation. These
methods simply compare the system outputs to the model out-
puts to calculate the deviations from normal conditions. The
differences between the system outputs and the model out-
puts are called residuals. Residuals are the key components
in model-based FDI. To make an FDI method robust to noise
and uncertainties, typically, a hypothesis test such as Z-test
(Biswas et al., 2003) is used to determine whether a resid-
ual deviation is statistically significant. Figure 1 represents
model-based fault detection and isolation.

In recent years, many research groups have expanded model-
based fault detection and isolation to detect and isolate more
faults by using a broader definition for residuals and devel-
oping more sophisticated approaches to derive the residu-
als (Mosterman & Biswas, 1999; Bregon, Biswas, Pulido,
Alonso-Gonzalez, & Khorasgani, 2013; Garcia & Frank,
1997). A system model is a set of mathematical equations
which represent the system’s normal behavior. A residual in
the broader term is defined as an analytical redundancy rela-
tionship (ARR) in the system equations. In this definition, a
residual is not necessarily the difference between the model
output and the system output; instead any analytical relation-
ship derived from the redundancies in the system is a residual.
This expansion has several advantages. 1) It is been shown
that by using the analytical redundancy approach, we can de-
tect and isolate faults which were not previously detectable or
isolable. 2) To design diagnosers using analytical redundancy
approach, we do not need the system complete model and a
subset of equations may be adequate to detect and isolate the
faults. 3) It is possible to design more robust residuals using
analytical redundancy approaches because they typically in-
clude much less parameters, and measurements compared to
the entire model.

Model-based methods are computationally efficient. More-
over, it is easy to understand and interpret the diagnosis re-

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

sults of these approaches. However, for complex systems,
developing reliable models can be expensive, and it is often
infeasible to derive a sufficiently accurate model for the sys-
tem that generates correct diagnosis results. When the system
model is not available, data-driven solutions can be used for
fault detection and isolation. Instead of relying on the sys-
tem models, data-driven solutions use system historical data
and machine learning techniques for FDI. There are two main
data-driven fault detection and isolation approaches: 1) clas-
sifier method and 2) system model methods (Salfner, Lenk,
& Malek, 2010).

Figure 1. Model-based fault detection and isolation. At any
given moment t, u(t) represents the inputs from actuators
and y(t) represents the outputs (measurements). The system
faults are represented by f(t). The model represents the sys-
tem’ s digital twin and the residuals, r(t), are the differences
between the system outputs and the model outputs at time t.

The classifier approaches use both normal and fault data
to train a classifier which classify each sample point (or
each time window which includes several successive samples
points) as normal or fault modes. When fault data is not avail-
able, system model methods are reliable alternatives. These
methods use normal data to learn system model and apply
the trained model to compute expected value of the systems.
When the expected value does not match the current value, we
can conclude that the system is not behaving as expected and
therefore, may be in a fault mode. Unlike classifier methods,
system model methods do not require fault data and therefore,
are more practical.

In this paper, we propose a new data-driven ARR genera-
tion for fault detection and isolation as an improved version
of system model methods. Similar to the model-based ap-
proaches which use the system physical equations for ARR
generation, we use historical data during normal operation
to extract redundancies among sensor measurements. We call
these redundancies data-driven ARR. We then use the derived
data-driven ARRs for fault detection and isolation. Like other
data-driven methods, our solution does not rely on the system
model. Moreover, our solution can detect and isolate more
faults than traditional model learning methods, it can work
when the system is not fully observable, and does not rely on
vast amount of historical fault data. This makes our approach
practical in many real cases where there are data limitations.

The rest of this paper is organized as follows. Section 2 re-
views the background and the previous work in model-based

and data-driven fault detection and isolations. Section 3 for-
mally defines the data-driven ARR generation problem. Our
proposed solution for generating data-driven ARRs is pre-
sented in Section 4. Section 5 demonstrates the application
of our method through a case study. The conclusions are pre-
sented in Section 6.

2. PRIOR ART AND BACKGROUND

Residuals are fault indicators in model-based FDI methods
(Isermann & Balle, 1997). When a system is operating nor-
mally, the residual values are expected to be close to zero.
For example, consider a linear electric resistor. The resistance
can be measured as the ratio of electric voltage over electric
current R = V

I , where R represents the resistance, V repre-
sents the electric voltage and I represents the electric current.
When both voltage and current are measured, and we know
the nominal value of the resistance, Rn, we have a redun-
dancy in the system. The difference between the measured
resistance, V

I and nominal value of the resistance represents
a residual, r = Rn� V

I . During the normal operation r is ex-
pected to be close to zero. However, if because of for example
a short-circuit fault the value of the resistance drops signifi-
cantly, the residual is not equal to zero anymore. Residuals
are the most important part in any model-based fault detec-
tion and isolation (FDI) solution. To detect a fault, f , model-
based approaches require a residual sensitive to the fault and,
at the same time, invariant or at least robust to uncertainties
and noise in the system. To isolate a fault fi from another
fault fj requires a residual sensitive to fi and at the same time
insensitive to fj and other uncertainties in the system (Frank
& Ding, 1994).

Prognostics and health monitoring engineers use system mod-
els to extract residuals for fault detection and isolation (FDI).
A system’s model is a set of mathematical equations which
represent the system normal behavior. A residual represents
an analytical redundancy in system equations. Several ap-
proaches such as graphical methods (Mosterman & Biswas,
1999; Bregon et al., 2013), observer-based methods (Garcia
& Frank, 1997), and parity equations and ARRs (Gertler,
1998) have been developed to extract residuals from system
equations. ARR -based methods are among the most common
approaches for residual generation. These methods use two
or more ways to determine the same variable, where at least
one way uses model equations (Isermann & Balle, 1997). A
possible inconsistency between the two or more values de-
rived for the same variable is considered as a residual or fault
indicator.

To make a diagnoser robust to noise and uncertainties, typ-
ically, a hypothesis test such as Z-test (Biswas et al., 2003)
is used to determine if a ARR deviation is statistically sig-
nificant. In the last step, a fault isolation algorithm, uses
a decision logic to generate possible fault candidates based

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

on the hypothesis tests outputs (alarms). Figure 2 repre-
sents a model-based fault detection and isolation scheme us-
ing ARRs.

Figure 2. Model based FDI using ARRs.

In recent years data-driven diagnosis methods have
been developed for fault detection and isolation
(Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003).
In comparison, model-based methods have less computa-
tional costs. Moreover, it is easy to understand and interpret
model-based diagnosis results. However, for complex sys-
tems, developing reliable models can be expensive, and it is
often infeasible to derive a sufficiently accurate model for
the system that generates correct diagnosis results. Even
when the model is available, it can become less reliable over
time as the system and the environment change gradually.
In our example, the value of the resistance could change
because of the operating temperature. In this case, using
the original model with the nominal value for FDI leads to
false alarms. Therefore, model based FDI is not practical in
many real cases. When sufficiently accurate models are not
available, data-driven diagnosis methods bring promising al-
ternatives to model-based approaches (Venkatasubramanian
et al., 2003). Instead of relying on the system models, data-
driven solutions use system historical data to learn models
for FDI.

Data-driven FDI methods operate exclusively on measured
data without detailed knowledge of the system. Therefore,
we do not need to have access to the system model. More-
over, as more data become available it is possible to keep the
model updated through retraining. There are two main data-
driven FDI approaches: 1) classifier methods and 2) system
model methods (Salfner et al., 2010). Classifier method is
shown in Figure 3. The classifier approaches address FDI
in two steps; 1) feature selection and feature extraction and
2) fault classification. The first step is designed to select a
subset of relevant measurements or extract a set of new fea-
tures from the measurement data. Typically, this would rep-
resent a subset of measurements or extracted features that are
sensitive to the faults and, at the same time, invariant or at
least robust to noise and disturbances in the system. Among
feature extraction methods, Principal Components Analysis
(PCA) is the most widely used (Venkatasubramanian et al.,
2003; Wang, Zheng, Farahat, Serita, & Gupta, 2019; Wang,

Farahat, Gupta, & Wang, 2020). It generates a set of orthog-
onal bases in the directions where the data has the greatest
variances. The second step maps the features to the nominal
operating mode or different fault modes. The classifier ap-
proaches assume the training data is labeled by instances for
the normal and fault classes. These methods typically apply
classifier methods such as neural networks or Bayesian net-
works to map the features to the system fault modes.

Figure 3. Data-driven classifier method fault detection.

The classifier methods use both normal and fault data to train
classifiers which classify each sample point (or each time
window which can include several successive samples points)
as normal or fault modes. Data-driven methods use normal
and close to fault historical data to train their classifiers for
fault detection. In many domains, improvements in the pro-
duction technology has led to more reliable systems. As the
systems become more reliable and less likely to fail, fewer
historical fault data is available to train the classifiers. A com-
mon solution is to generate fault data in the lab environment
by using different methods such as accelerated aging. These
methods subject the system to high stresses to create different
faults in a short period of time in order to gather fault data for
training. Clearly this approach can be very expensive espe-
cially for complex systems.

When fault data is not available, system model methods are
reliable alternatives. These methods use normal data to learn
system model and apply the trained model to compute ex-
pected value of the systems. When the expected value does
not match the current value, we can conclude that the system
is not behaving as expected and therefore, may be in a fault
mode. Unlike classifier methods, system model methods do
not require fault data and therefore, are more practical. A
system model method is shown in Figure 4.

In this paper, we argue that learning the system model from
the data is not enough for accurate FDI and we can achieve
better results by learning the residuals from the data for the
following reasons. 1) Model learning approaches learn a
model that maps system input to the system output. In many
cases, the system input and output are not obvious. There-
fore, it is not trivial to learn the system overall model. In
our residual generation method, we do not define variables as

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 4. Data-driven system model fault detection methods.

input or output. Instead, we find a minimal set of variables
which can learn each target variable. 2) In many cases, we do
not have access to all the measurements. Therefore, we can-
not learn the system model. However, we still may be able to
learn residuals as they are local sets of redundant variables.
3) In many cases it is challenging to isolate different faults
in model learning methods as they all affect the system out-
put. Using the residuals, we can isolate different faults much
better. This is because of the local nature of the residuals.
Several faults can affect different sensors. By using minimal
set of sensors in each residual we increase the likelihood of
having a residual sensitive to a fault and not sensitive to the
other ones. This information can be used for fault isolation.

Instead of using the system physical model for residual gen-
eration, we use historical data during normal operation to
extract redundancies among sensor measurements. We call
these redundancies data-driven ARRs. We then use the data-
driven ARRs for FDI. Like data-driven system model FDI
methods, our solution does not require system model and is
not relied on a vast amount of historical fault data. However,
our solution can detect and isolate more faults than traditional
model learning methods and can work when the system is not
fully observable. These make our approach practical in many
real cases where there are data limitations.

3. PROBLEM FORMULATION

In this section, we formally define the fault detection and
isolation problem, data-driven ARRs, and detectable and
isolable faults using our data-driven method. These defini-
tions help us formulate the data-driven ARR generation prob-
lem in a systematic way.

Definition 1 (Fault) A deviation of a system from standard

condition is referred to as a fault.

Early fault detection and isolation (FDI) is critical for the
operators safety, and timely maintenance recommendations
which can save industries millions of dollars. We define FDI
as follows.

Definition 2 (FDI) Fault detection determines the occur-

rence of a fault and the fault occurrence time in the system.

In the next step, fault isolation pinpoints the type and location

of the occurred fault in the system.

Proposing a new method for data-driven ARRs is the main
contribution of this paper. We define data-driven ARRs as:

Definition 3 (Data-driven ARR) A set of variables in the

dataset, V , plus a target variable vt where vt /2 V represent

a data-driven ARR if there exists a machine learning model

that can estimate vt using V with a given accuracy, ✏, for the

validation data, v̂t = model(V), where ||v̂t � vt|| ✏ . The

data-driven ARR for variable vt is rt = v̂t � vt.

In model-based analytical redundancy methods, we use min-
imal ARRs as the smallest subset of equations which include
redundancies for ARR generation. Minimal ARRs are more
likely to be useful in fault isolations (they are sensitive to
fewer number of faults). Moreover, they tend to be less sensi-
tive in model uncertainties as they include fewer parameters
and measurements. We define minimal data-driven ARRs as:

Definition 4 (Minimal data-driven ARR) A data-driven

ARR, r = (vt, V) is a minimal ARR if no subset of V creates

a data-driven ARR with the target variable vt.

In model based FDI methods, we define a fault detectable
when there exists a residual sensitive to the fault and at the
same time invariant or at least robust to uncertainties and
noise in the system (Biswas et al., 2003). Similarly, we define
a detectable fault using data-driven ARRs as:

Definition 5 (Detectable fault) A fault f is detectable if

there exists a data-driven ARR, r = (vt, V), in the data set

where there is a statistically significant difference between

v̂t = model(V) when fault f occurs and when it does not

(normal operation).

In model based FDI methods, we define a fault fi isolable
from another fault fj when there exists a residual sensitive to
fi and at the same time insensitive to fj and other uncertain-
ties in the system (Biswas et al., 2003). Similarly, we define
isolable faults using data-driven ARRs as:

Definition 6 (Isolable faults) Fault fi is isolable from fault

fj if there exists a data-driven ARR, r = (vt, V), in the

data set where there is significant statistical difference be-

tween v̂t = model(V) when fault fi occurs and when fault fj
occurs.

Using these definitions, we develop a method to generate
data-driven ARRs and design a data-driven diagnoser for FDI
in the next section.

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

4. METHODOLOGY

In this section, we propose two algorithms for data-driven
ARR generation, and two methods to address delay in dy-
namic systems. In the next section, we present a simple case
study to clarify our solution.

4.1. Data-driven Residual Generation Algorithm

In the previous section, we defined a data-driven ARR as a set
of variables in the dataset, V , plus a target variable vt where
we can use V to estimate vt. To find these set of variables for
each target variable, we propose two method 1) exhaustive
search, 2) forward feature selection. The exhaustive search
algorithm can find several ARRs for each target variable. This
method can be helpful when there are several faults in the sys-
tem and more ARRs can help isolating faults from each other.
However, the exhaustive search is computationally expensive.
The feature selection algorithm is an efficient alternative solu-
tion. The feature selection method finds at most one ARR per
target variable. Even though this may lead to missing some
ARRs, we believe feature selection algorithm is sufficient for
most applications.

Exhaustive search: In the exhaustive search method, for each
target variable vt we find all the minimal set of variables that
can estimate vt. Each of these variable groups plus vt is a
minimal data-driven ARR. We use a tree search algorithm to
find these residuals.

• For each target variable vt, we start with all the variables,
and see if they can estimate vt accurately (there exists a
machine learning model that can estimate vt using the
variables with the required accuracy). If they cannot, it
means there is no residual in the dataset for vt as even all
the variables cannot estimate vt. In this case, we move
to the next variable.

• If they can, all the variables plus vt create an ARR. How-
ever, we cannot be sure that this ARR is minimal. For
each variable in V , we remove the variable and check if
the subset still can estimate vt, if no subset of V can es-
timate vt, it means V plus vt is a minimal ARR. We save
this ARR and move to the next variable.

• Otherwise, the ARR is not minimal. In this case, we
repeat this procedure for every subset of variables that
can estimate vt, till we find all the minimal ARR. In more
details, for each variable v 2 V we remove v and check
if V � v plus vt is an ARR. If not, we know there is no
ARR in V �v for vt, if yes, we check if it is also minimal.
If the data-driven ARR is minimal, we save V �v plus vt
as a new ARR. Otherwise, keep removing variables till
we reach a minimal ARR.

• After finding all the minimal ARRs for vt, we move to
the next variable.

Note that to check if a set of variables can estimate the target

variable, we use the selected set of variables to learn a model
v̂t = model(V) and compute estimation score for the learned
model. The model can be linear regression, neural network,
support vector regression or any other regression model based
on the application.

Forward feature selection: The exhaustive search finds all
the minimal data-driven ARRs in the dataset and therefore,
it is guaranteed to achieve maximum detectability and isola-
bility. However, this algorithm is computationally expensive
and may not be practical for systems with large number of
measurements. To address this problem, we propose a for-
ward feature selection algorithm as an alternative solution.
We use forward feature selection to select the minimum num-
ber of variables which can estimate the value of each variable
in the dataset.

• For each target variable, vt, in the set of variables we go
through the dataset and measure the estimation score for
each variable in the dataset. We add the variable with
the highest estimation score as the first variable in the
residual list, R.

• We then go through all the remained variables and add
the variable which achieves the highest improvement in
estimation score to the residual list, R. We stop when we
reach to the required accuracy score, error ✏, where
v̂t = model(R), and error = ||vt � v̂t||. If we do not
reach the required accuracy score, we conclude there is
no residual for vt.

• At the end, we go through all the variables selected for
each residual and remove the ones which have no signif-
icant contribution to the overall set of variables.

The data-driven ARR for variable vt is r = vt � model(R).
Just because this relationship holds, this does not mean that r
is useful in fault detection and isolation. In the next subsec-
tion, we find a subset of generated residuals that are useful for
fault detection and isolation. Toward this end, we use statis-
tical analysis such as Z-test (Biswas et al., 2003)to see if the
generated residuals are statistically different with and without
faults and therefore, can be used for FDI.

4.2. Selecting Useful ARRs

Not all the analytical redundancies (data-driven ARRs) are
useful for fault detection and isolation. For each fault mode
in the system, we go through all the ARRs and select the
best set of ARRs to detect the fault. Different metrics can
be used to measure the performance of ARRs in fault detec-
tion and isolation. For the sake of demonstration, we use the
following simple approach: For each residual we use Z-test
to quantify the difference between the residual in faulty and
normal dataset. We select the residuals that their hypothesis
tests show statistically significant difference between normal
and faulty data. The selected residuals can also be used to
isolate faults.

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

ALGORITHM 1: Data-driven Residual Generation
1: Let M be the set of measurements in the system.
2: Let � be the set of possible delays in the system.
3: Initialize the set of residuals, R = ;.
4: for mr 2 M do
5: Initialize the set of loads for mr , Lr = {}.
6: rscore = 0.
7: for iteration = 1:Nl do
8: Initialize mcandidate = ;.
9: for ml 2 M do

10: if ml 6= mr then
11: for �t 2 � do
12: Use normal data to train

mr = model(Lr + {ml(t��t)}).
13: if modelscore > rscore + ✏ then
14: mcandidate = {ml(t��t)}
15: rscore = modelscore
16: end if
17: end for
18: end if
19: end for
20: Lr = Lr +mcandidate
21: end for
22: Use normal data to train mr = model(Lr).
23: Use normal data to calculate rn = mr � model(Lr) .
24: Use failure data to calculate rf = mr � model(Lr) .
25: if there is a statistically significant difference between rn

and rf then
26: R = R+ {(mr, Lr)}.
27: end if
28: end for

4.3. Delays in the System

In many cases the variables are correlated, and they repre-
sent redundancies in the system. However, because of delays
in dynamic systems for example the time it takes for heat to
transfer through materials, we cannot use them to estimate
target variable if we only use the current sample values. We
propose two solutions to this problem 1) using window size
2) using sequential models such as recurrent neural networks
(RNNs). By using a window of last n samples for each vari-
able, our model can capture delays in the system and generate
data-driven ARRs for systems with delays. Figure 5 shows a
simple example where variable z is a function of variables x,
and y.

Figure 5. variables with delays.

However, because of the delay in the system the effect of vari-
able x on z appears with 3�t and the effect of variable y ap-
pears with 2�t delay. As it is shown in the figure, we can
capture this residual by using a window of size 4 for each
variable when estimating the target variable. The window
size is a meta parameter which users can define based on their
knowledge of the system. Algorithm 1 shows the overall so-
lution.

It is also possible to use sequential models such as recur-
rent neural networks (RNNs) and long-short term memory
(LSTM) to address delay. RNNs include a memory loop in
their structure and therefore, they can use information from
previous samples in estimating the target variable. RNNs
have been used in many applications such as speech recog-
nition, and language modeling in recent years. Long Short-
Term Memory networks (LSTMs) are a subclass of RNNs,
which are capable of learning long-term dependencies as well
(Hochreiter & Schmidhuber, 1997). When long-term delays
exist in the system, and we expect long-term dependencies
among the variables we can use LSTM to learn the residuals.
However, training LSTM networks could be computationally
expensive, and the users should consider computational limi-
tations when selecting this model.

5. CASE STUDY

In this case study, we show our proposed data-driven residual
generation approach can generate a set of residuals for a 4
tank system using historical data. The 4 tank system includes
the following measurements:

1S

1y

1T

1u

1P

2y

2P

4y

3P

5y

2T

3y

3T

2u

2S

6y

4T
4P

Figure 6. Case study: four tank system (Khorasgani et al.,
2019).

qin1 = u1

p1 = y1

q1 = y2

p2 = y3

q2 = y4

qin2 = u2

q3 = y5

p4 = y6

(1)

where qin1 is the flow rate of the inflow to tank 1, p1 is the
pressure in tank 1, q1 is the flow rate of the outflow from tank
1 to tank 2, p2 is the pressure in tank 2, q2 is the flow rate
of the outflow from tank 2 to tank 3, qin2 is the flow rate of
the inflow to tank 3, q3 is the flow rate of the outflow from

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

tank 3 to tank 4, and p4 is the pressure in tank 4. Note that
some of the flow rates and pressure variables in the system
such as pressure in tank 3 and flow rate out of tank 4 are not
measured.

For dynamic systems such as the four tank system, we con-
sider the integral of each variable as a new variable to gener-
ate residuals. This increases the number of residuals and can
improve the diagnosability. We can also use the derivative
of variables. However, the derivative is highly sensitive to
noise. To calculate the integrals, we need the initial variables.
Typically, this is the main motivation to choose derivative ca-
sualty in model-based methods (Frisk et al., 2012). An inac-
curate initial value adds a bias to the integral variable. In the
data-driven approach, a bias can be easily learned by machine
learning models and does not cause any challenge. Figure 7
shows u1 and y1 and their integrals.

Figure 7. u1 and y1 and their integrals. There is 5% gaussian
noise in each measurement. We use SciPy library in python
to compute the integrals.

Using our proposed residual generation algorithm based on
forward feature selection, we can find at most one data-driven
ARR for each variable. Table 1 shows the generated residual
for each target variable. ⇥ means our forward feature se-
lection approach has failed to find any residual for the given
target variable. Note that forward feature selection method is
a greedy algorithm and may miss some of the residuals. We
applied linear regression as our machine learning model and
used the coefficient of determination, R2 > 99% as a mea-
sure to determine if the machine learning model can estimate
the target value.

Some of the derived residuals are trivial, for example we
know that the flow rate between two tanks is a function of the
difference between their pressures, therefore, it is not surpris-
ing to see the model extracts the relationship between p1 = y1
q1 = y2, p2 = y3 to generate residuals ry1 and ry3 . How-
ever, in some other cases our algorithm was able to derive
more complicated relationships. For example, consider resid-

ual ry4 . We know that q2 = y4 is a function of pressure
in tank 2, p2 and pressure in tank 3, p3. Even though p3 is
not among the measurements, our algorithm has been able to
use pressure in the next tank p4 = y6 to estimate y4. As an
other example, rR u1

could capture the dynamic relationship
between the inflow to tank one, its pressure and the outflow
from tank 1 to tank 2.

Figure 8. An incipient fault in tank 1.

As we discussed in this paper, not all the residuals are useful
in detecting an specific fault. For example, consider a leakage
in tank 1 modeled as an incipient fault as it is shown in Figure
8. Algorithm 1 finds rR u1

as the useful residual to detect this
fault. Figure 9 shows that residual rR u1

is sensitive to this
fault but residual ry1 is not. The upper and lower bounds for
each residual are derived using residual value during normal
operation, rn: upper bound = r̂n + 3�rn, lower bound =
r̂n � 3�rn.

Figure 9. Data-driven residuals in the presence of the leakage
fault.

The main advantage of data-driven residual based fault detec-
tion and isolation compared to traditional data driven classi-
fier based methods is that the data-driven residual generation
requires no fault data for residual generation and limited fault
data for evaluating the residuals. In addition, the data-driven
residuals magnify the effect of fault in sensor data, and there-
fore, they can reduce the detection time, and improve over-
all accuracy. For example, consider the following scenario

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Table 1. Generated residuals using model-based vs data-driven methods

Target Variable Selected Variables Residual
u1 ⇥ ⇥
y1 y2, y3 ry1 = y1 � model(y2, y3)
u2 ⇥ ⇥
y2 ⇥ ⇥
y3 y1, y2 ry3 = y3 � modely3(y1, y2)
y4 y3, y5 , y6 ry4 = y4 � modely4(y3, y5, y6)
y5 ⇥ ⇥
y6 ⇥ ⇥R
u1 y1,

R
y2 rR u1

=
R
u1 � model(y1,

R
y2)R

y1 ⇥ ⇥R
u2 ⇥ ⇥R
y2 ⇥ ⇥R
y3 ⇥ ⇥R
y4 ⇥ ⇥R
y5 ⇥ ⇥R
y6 ⇥ ⇥

where we have access to data with an abrupt leakage in Tank
1 during the training. Figure 10 shows the abrupt fault.

Figure 10. An abrupt fault in tank 1.

To show the the advantage of using data-driven residuals
compared to relying purely on sensor data, we designed the
following experiment. We use the data with abrupt failure
to train a logistic regression model and we use this model
to detect the incipient fault shown in Figure 8. In the first
model we only use sensor variables form the 4-tank system.
In the second model we use the sensor data + selected resid-
ual, rR u1

. Figure 11 shows the data-driven residual signifi-
cantly improves the model performance.

6. CONCLUSIONS

In this paper, we proposed a new data-driven ARR generation
for fault detection and isolation. Our approach uses historical
data during normal operation to extract redundancies among
sensor measurements. We call these redundancies data-driven
ARRs. We then use the derived data-driven ARRs for fault
detection and isolation. Our solution has the following advan-
tages: 1) It does not rely on the system model. 2) It can detect
and isolate more faults than traditional data-driven methods.
3) It can work when the system is not fully observable. 4) It

Figure 11. Receiver Operating Characteristic (ROC) curve
(Hanley & McNeil, 1982) for leakage detection with and
without the selected residual, rR u1

.

does not rely on vast amount of historical fault data. These
advantages make our approach practical in many real cases
where there are data limitations.

REFERENCES

Biswas, G., Simon, G., Mahadevan, N., Narasimhan, S.,
Ramirez, J., & Karsai, G. (2003). A robust method
for hybrid diagnosis of complex systems. IFAC Pro-

ceedings Volumes, 36(5), 1023–1028.
Bregon, A., Biswas, G., Pulido, B., Alonso-Gonzalez, C., &

Khorasgani, H. (2013). A common framework for
compilation techniques applied to diagnosis of linear
dynamic systems. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 44(7), 863–876.
Frank, P. M., & Ding, X. (1994). Frequency domain approach

to optimally robust residual generation and evaluation
for model-based fault diagnosis. Automatica, 30(5),
789–804.

Frisk, E., Bregon, A., Aslund, J., Krysander, M., Pulido, B.,
& Biswas, G. (2012). Diagnosability analysis consid-
ering causal interpretations for differential constraints.

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, 42(5), 1216–1229.
Garcia, E. A., & Frank, P. M. (1997). Deterministic nonlinear

observer-based approaches to fault diagnosis: a survey.
Control Engineering Practice, 5(5), 663–670.

Gertler, J. (1998). Fault detection and diagnosis in engineer-

ing systems. CRC press.
Hanley, J. A., & McNeil, B. J. (1982). The meaning and

use of the area under a receiver operating characteristic
(roc) curve. Radiology, 143(1), 29–36.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735–1780.

Isermann, R., & Balle, P. (1997). Trends in the application
of model-based fault detection and diagnosis of techni-
cal processes. Control engineering practice, 5(5), 709–
719.

Khorasgani, H., Biswas, G., & Jung, D. (2019). Structural
methodologies for distributed fault detection and isola-
tion. Applied Sciences, 9(7), 1286.

Mosterman, P. J., & Biswas, G. (1999). Diagnosis of con-

tinuous valued systems in transient operating regions.
IEEE Transactions on Systems, Man, and Cybernetics-

Part A: Systems and Humans, 29(6), 554–565.

Salfner, F., Lenk, M., & Malek, M. (2010). A survey of online
failure prediction methods. ACM Computing Surveys

(CSUR), 42(3), 1–42.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., &
Yin, K. (2003). A review of process fault detection
and diagnosis: Part iii: Process history based methods.
Computers & chemical engineering, 27(3), 327–346.

Wang, Q., Farahat, A., Gupta, C., & Wang, H. (2020). Health
indicator forecasting for improving remaining useful
life estimation. arXiv preprint arXiv:2006.03729.

Wang, Q., Zheng, S., Farahat, A., Serita, S., & Gupta, C.
(2019). Remaining useful life estimation using func-
tional data analysis. In 2019 ieee international confer-

ence on prognostics and health management (icphm)

(pp. 1–8).

9

