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ABSTRACT 

Centrifugal pumps are essential equipment in a wide range of 

industries. Pump maintenance costs make up a considerable 

amount of their operational life cycle costs. Therefore, 

estimating pumps health condition is rather critical. 

Traditional vibration analysis usually done by extracting 
features through frequency domain and the vibration analysis 

require critical domain knowledge. This paper presents a 

novel perspective of utilizing vibrational signal by combining 

autoencoder and Wavenet, providing a set of embeddings that 

contain essential characteristics for these high-frequency 

vibration signal and degradation status without significant 

insight into the domain. 

1. INTRODUCTION 

 

Centrifugal pumps are versatile and have been used in a wide 

range of applications such as agricultural services, 
wastewater services, and other industrial services. The 

mechanism behind the pump is converting rotational kinetic 

energy to induce flow or raise pressure of liquid. Boiler 

feedewater pump (BFP) is an important piece of equipment 

in a thermal power generation plant. Generally, the cost of the 

pump itself only accounts for less than 20% of its life cost 

and about 30% - 35% of the life cost is allocated to pump 

operation and maintenance. Understanding the degradation 

status of the pumping system provides important insight into 

maintenance schedule and can help reduce maintenance 

costs. Traditionally, engineers evaluate the performance 

and/or find faults by observing the vibrational signal, 
specifically, looking at the power spectrum density of the 

vibrational signal measured at different locations. However, 

such vibration analysis requires substantial domain 

knowledge and experience to accommodate all the variables 

caused by various conditions like different pump OEM 

models, sizes in different plants, units, and facilities. Often 

Vibration Analyst must bin the vibration signal according to 

a predetermined frequency bins, thereby potentially 

removing useful markers about vibration health. 

Long short-term memory (LSTM) and autoeconders have 

been used to process sequential data. However, most of these 

applications were focused on relatively lower sampling rate, 

like time series data and making prediction from it (Gensler 

et al., 2017) or require prior feature extracting steps such as 
Short Time Fourier Transformation (STFT) (Marchi et al., 

2015). Those methods suffer from not leaning the high 

frequency characteristics and can be rather time consuming, 

whereas our proposed method is able to ingest longer 

sequential data while largely reducing computational time 

without applying any preprocessing steps to the raw data. 

This paper presents a novel way of conducting vibration 

analysis on pump bearings to determine the degradation 

trend, without requiring expert domain knowledge, by 

extracting useful information using a WaveNet (Aaron van 

den Oord et al., 2016) based autoencoder (Hinton & Zemel, 

1994) on the historical vibration data. WaveNet is known for 
processing raw audio data and building generative models. 

Unlike recurrent neural network (RNN), WaveNet is capable 

of handling much longer sequential data, which is very 

suitable for high frequency signals like sound and vibration 

signals. The autoencoder model extract essential information 

for reconstructing the input data. The embeddings from the 

autoencoders can represent the characteristics of the input 

data. By combining the two techniques, we were able to 

compress the vibration data 12x and extract the embeddings 

from raw vibration data and use them to estimate the 

degradation status of pumps. We pre-selected a collection of 
vibration data from pumps under “normal” condition.  The 

degradation trend is estimated by computing the distance of 

the embeddings from “normal” data to new inputs. Such 

model provides additional information on pump condition 

vis-a-vis vibration data with no prior domain knowledge. 

This technique can assist decision making and reduce costs 

from improper operation and maintenance.  
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2. METHODS AND EXPERIMENT 

 

2.1. Vibration Data Preprocessing 

The model was trained on 216 measurements from a group of 

six pumps and each measurement was taken at 1600 Hz 
sampling rate with length of 4096. Figure 1 shows an 

example of one measured vibration data in three directions 

(channels). The vibration data was taken by a handheld 

device on the pump surface in three directions (X,Y,Z). 

Therefore, for a single vibration measurement, the size is 

4096 x 3.  

 

Figure 1. Raw vibration data measured from the surface of a 

pump. 

 

A standard scaler was applied to each feature before further 

analysis. A standard score, 𝑧 , for a given value 𝑥  was 

calculated as: 

 𝑧 =  (𝑥 −  𝑢) / 𝑠 , (1) 

where 𝑢  is the mean of training measurement value for a 

feature and 𝑠  is the standard deviation of the training 

measurement value for that feature. 

Training samples are a list of sequential data consisting of 

vibration measurement. Figure 2 shows an illustration of how 

we took a sliding window size of 512 and stride of 128 for 

each measurement. Each box shows one window taken as a 
training sample. Thus, size of one training sample is 512 x 3. 

The sliding window is applied on each measurement 

individually to make sure we have a continuous sequence 

within each one of the training samples (no training sample 

contains signal from two different measurements).  

  

Figure 2. Illustration of sliding window of size 512 applying 

on one measurement of vibration signal.  

2.2. WaveNet 

WaveNet was first introduced by Google’s DeepMind in 

2016. In contrast to RNN and other attention models, 

WaveNet was designed to accommodate long sequential data 

sets like sound waves and vibration data.  

The core idea of WaveNet is taking conditional probability of 

raw audio signal at each sample point and join it with the 

previous sample points. The joint probability of a waveform 

𝑥 = {𝑥1, 𝑥2 … 𝑥𝑛} is formulated as: 

𝑝(𝑥) = ∏ 𝑝(𝑥𝑡|𝑥1, 𝑥2 … , 𝑥𝑡−1)

𝑇

𝑡=1

  (2) 

Therefore, each data point in a sequential sample carries 
information from the previous time steps within the sequence. 

Figure 3 visualizes one block of 5 layers WaveNet with three 

hidden layers, an input layer and an output layer. The dilation 

rate increases in power of two for each addition layer.  

 

Figure 3. Visualization of dilated casual CNN. 

 

The activation function used in WaveNet is a gated activation 

unit that was introduced in the Pixel recurrent neural 

networks (Aäron Van Den Oord et al., 2016). The gated unit 

is formulated as 
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𝑧 =  𝑡𝑎𝑛ℎ(𝑊𝑓,𝑘 ∗ 𝑥 ) ⨀𝜎(𝑊𝑔,𝑘 ∗ 𝑥) ,                  (3) 

where ∗ and ⨀ are convolution operator and element wise 

multiplication operator, respectively, 𝑡𝑎𝑛ℎ(∙) and 𝜎(∙)  are 

the tanh activation function and sigmoid activation function, 
f, g, and k denote the filter, gate, and layer index, 

respectively.   

Here we implemented the skip connection and residual that 

were used in the original WaveNet to accelerate the training 

process. The idea of skipping connection is to avoid the 

vanishing gradient problem, so the gradient would not be too 

small and the weights could be updated relatively fast. For 

further detail, please refer to the original WaveNet 

publication (Aaron van den Oord et al., 2016).  

2.3. Autoencoder  

Autoencoders are sometimes considered unsupervised or 

semi supervised learning. The focus of an autoencoder is 
force the model to compress the input data and learn a 

representation (embedding) out of the input data while 

eliminating the noise and unwanted signals to accomplish 

dimensionality reduction. Figure 4 shows the basic 

architecture of an autoencoder. Autoencoders generally have 

series of fully connected layers as encoder followed by a 

bottleneck (embedding) layer then reconstruct the input data 

through a decoder, which mirrors the encoder structure.  

The idea of this structure is to force the model to compress 

input data and to only retain the essential information 

(embedding layer) for reconstructing the input data. The 
target is to minimize the difference between the raw input 

data and the reconstructed signal. Here we used mean squared 

error (MSE) between labels and predictions as loss function, 

which can be formulated as 

𝐿(𝑦, �̂�)  =
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1  , (4) 

where 𝐿(𝑦, �̂�)  is the loss function given labels 𝑦  and 

prediction values �̂�, n is the number of labels. 

Unlike principle component analysis (PCA) which finds the 

hyperplane underlying the input data to reduce 

dimensionality, autoencoder introduces nonlinearity to the 

model and learns the representation of the input data.  

To add to the robustness of the proposed model, random 

Gaussian noise was added to the input training data so the 

model will predict the original signal from corrupted input 

(Vincent et al., 2008).  

 
Figure 4. Autoencoder architecture. 

 

2.4. Model Architecture  

This paper proposes a fusion neural network that combines 

autoencoder and WaveNet to extract the essential 

information out of a set of sequential data. Figure 5 shows the 

architecture of the proposed model. The model is divided into 
three blocks: encoder segment, embedding layer, and the 

decoder.  

The encoder is to extract the information from input data by 

compressing the data to a single vector of embeddings. Input 

sequential data in size of 512 x 3 first go through a 1 by 1 1D 

CNN layer with 64 filters followed by three blocks of 8 layers 

WaveNet to process the data while maintaining the sequential 

order of the data points. After the WaveNet, two sets of 

compression steps composed by one 1 by 1 1D CNN and a 

max pooling layer with a pooling rate = 2. The input data is 

compressed 12 folds from 512 x3 into the embeddings, a 

single vector with 128 elements. The decoder is a reverse 
process to the encoder except instead of max pooling layers, 

the decoder combines the 1D CNN layer with up-sampling 

layer to reconstruct the data from embeddings back to the 

same size as the input data. 

 

Figure 5. Schema of proposed model. 
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3. RESULTS 

3.1. Training 

The model was trained on a of 216 vibration measurements 

from six pumps, with A total number of 6264 training 

samples. Adam optimizer was used to reduce the loss 
function defined in section 2.3. Training samples were 

shuffled, and 20 percent of training samples were set as 

validation samples. After 100 epochs of training with batch 

size of 32, the MSE reduced to ~ 0.16 and validation loss was 

about ~ 0.2.  The proposed model was developed using 

TensorFlow 2.x (Abadi et al., 2016) and WaveNet 

implementation in this proposed model was built upon the 

WaveNet example in  (Géron, 2017). 

3.2. Signal Reconstruction 

Input vibration signal is compressed into embedding 

representation via encoder then the decoder reconstructs the 

vibration signal from the embeddings. Figure 6 shows the 
input vibration data in three directions of a pump and the 

signal reconstructed by the decoder. The proposed 

autoencoder model reconstructed the vibration signal from all 

three channels well, as shown in Figure 6.  

Pump vibration data contain critical information regarding 

pump mechanical and flow conditions. The vibration on 

pump surface is influenced by the mechanical components 

and flow conditions of a pump. A main way to investigate a 

pump status through vibration signal is analyzing the pump 

vibration at different multiple of the pump rotational running 

speed.  

Figure 7 presents the power spectral density (PSD) of the 

input vibration signal as well as the reconstructed vibration 

signal. In the plot, we can clearly see peaks all over the 

spectrum. These peaks are the multiples of pump rotational 

speed and these multiples are usually referred as 1x, 2x, 

3x…etc. As shown in the Figure 7 , the reconstructed signal 

in all three channels are able to reconstruct the multiples in 

the frequency domain.  

We also observed that the reconstructed signals behaved like 

projection operation. As seen in the PSD, the reconstructed 

signal retained the peak amplitudes and “projected” them to 

a flatter baseline. This frequency domain normalization 
suppressed the frequency bands that have higher amplitude 

and brought up the bands that are relatively low on power. 

This action enables a more general comparison between the 

multiples of running speed. That said the embeddings 

contains the essential information of the multiples of 

rotational running speed which can represent the pump 

operation condition at the time of measurement.  

 

 
Figure 6. Input vibration signal measured at three directions 

and the reconstructed signal. 

 

 

 
Figure 7. Power Spectral Density of input signals and 

reconstructed signals. 

3.3. Degradation Estimation 

The proposed model reconstructed the vibration signal and 
normalized the signal in frequency domain which made the 

vibration signal comparable across different measurements. 

The frequency normalized signal was reconstructed from the 

embeddings that contained the essential characteristic of the 

input vibration signal and can represent the operational 

condition of the pump.  

This paper demonstrates a simple comparison of pump 

vibration signal by calculating the Euclidean distance 

between the embedding of input vibration signal and the 

reference embedding. The reference embedding was selected 

manually for each pump based on maintenance records and 

vibration analysis report. The goal is to select the 
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measurement that is considered normal operating condition 

of the pump.  Therefore, the distance between the 

embeddings of input signals and the reference signals show 

how far the measurement is from the normal operating 

condition. This deviation is considered a degradation 

indicator.  

 

Figure 8. Euclidean distance of vibration signal embeddings 

to the reference measurement embedding. 

 

Figure 8 shows the embedding distances of measurements at 

different time points with respect to the reference 

measurements for each pump. By calculating the distance 

between new embeddings and normal embedding, we can 

estimate the degradation condition of a pump given new 

vibration signal inputs. Here we are looking for the pump 

degradation, meaning when a pump gradually deteriorates to 

a certain point where it would cause serious impact to the 
pump operation. For example, as we can see in pump 6, the 

change in embedding distance has a peak around mid-2016. 

This could indicate the pump was not running under normal 

operating condition at that point in time and the embedding 

distances of its previous measurements showed that they 

gradually deviated from normal operating condition as the 

distance increased. 

Please note that the distance values here are not an absolute 

measurement, meaning the range and/or amplitude can be 

different from pump to pump. Thus, the abnormal example 

shown in this paper was from a manual inspection. We were 
able to align several maintenance events with the degradation 

patterns from the distance measurement, large distance 

values corresponded to maintenance records. However, due 

to the lack of historical maintenance records this could not be 

confirmed for all degradation points.  It is possible to quantify 

the “degree of degradation” with properly labeled data, 

however, we do not have enough maintenance record for 

every data point, and this could be accomplished in the future. 

 

Figure 9. First three principle components from the 

embeddings of sample input data. 

 

To get a better intuitive view and understanding on what 

happens in the embedding level, we visualized the first three 

principle components of embeddings from input samples. 

Figure 9 shows the first three principle components of the 

large distance peak at mid-2016 (considered as abnormal in 

red) from pump 6 and the data points (consider as normal in 

green) before that peak. We can see clear separation between 

the cluster of normal data and abnormal data. 

4. DISCUSSION 

Centrifugal pumps serve an important part in various 

industries. Optimization of pump maintenance schedule has 

been a popular topic in wide range of fields due to the high 

cost of pump maintenance. Estimation of pump health 

condition and its degradation play an important role in 

reducing maintenance cost. This paper presented a novel way 

of conducting pump condition evaluation by extracting the 

representation from vibration signals and making the 

measurements comparable across different time points.  

The model integrated autoencoder with WaveNet, which was 
designed for processing raw audio signals, to extract the 

representation of vibration signal via compressing input 

signal into a much smaller vector referred to as embedding. 

One advantage of using WaveNet is that the model is capable 

of ingesting much longer sequential data compared to other 

attention based neural networks like (RNNs). This is critical 

because processing a longer sequential data allows the 

embedding vector to encapsulate richer information of each 

sample point. Another benefit, WaveNet is based on casual 

convolution and no recurrent connection; Thus, it is much 

faster than RNNs. One important contribution of this model 

is that it bypasses the prior domain knowledge for pump 
vibration analysis and allows analysis of operating condition 

directly. Lastly, the embedding extracted from vibration 

signal makes the vibration signal comparable across 

measurements. 
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This evaluation process we presented here is a preliminary 

estimation that can be improved in different ways. For 

example, the process can be made more robust by using 

different matrices to estimate the distances between 

measurements. Furthermore, with sufficient properly labeled 
data through maintenance records, the level of degradation 

could be quantified for better estimations. 

The proposed model can be valuable for extracting features 

from long sequential data that have higher sampling rate like 

audio or vibration data. The extracted representation 

(embedding) makes the input signal comparable across 

different measurements. The model also has great potential 

to be utilized in larger machine learning models. For instance, 

it can serve as feature extractor in a classification model. The 

degradation estimation could be extended to evaluate the 

remaining useful life for an industrial equipment.  
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