
Deep anomaly detection for industrial systems: a case study
Feng Xue1, Weizhong Yan1, Tianyi Wang1, Hao Huang2, Bojun Feng1

1 GE Research, Niskayuna, NY, 12065, USA
{xue,yan,wangt,bojun.feng}@ge.com

2 GE Research, San Ramon, CA, 94583, USA
hao.huang1@ge.com

ABSTRACT

We explore the use of deep neural networks for anomaly de-
tection of industrial systems where the data are multivari-
ate time series measurements. We formulate the problem
as a self-supervised learning where data under normal op-
eration are used to train a deep neural network autoregres-
sive model, i.e., use a window of time series data to predict
future data values. The aim of such a model is to learn to
represent the system dynamic behavior under normal condi-
tions, while expect higher model vs. measurement discrep-
ancies under faulty conditions. In real world applications,
many control settings are discrete in nature. In this paper,
vector embedding and joint losses are employed to deal with
such situations. Both LSTM and CNN based deep neural net-
work backbones are studied on the Secure Water Treatment
(SWaT) testbed datasets. Also, Support Vector Data Descrip-
tion (SVDD) method is adapted to such anomaly detection
settings with deep neural networks. Evaluation methods and
results are discussed based on the SWaT dataset along with
potential pitfalls.

1. INTRODUCTION

Deep neural networks have made tremendous progress recent
years in a number of areas, particularly in image and natu-
ral language processing (He, Zhang, Ren, & Sun, 2016; Liu
et al., 2017; He, Gkioxari, Dollar, & Girshick, 2017; Devlin,
Chang, Lee, & Toutanova, 2019). In a recent survey (Khan
& Yairi, 2018), deep learning has been reported to perform
competitively in a number of asset health management appli-
cations, namely anomaly detection and diagnosis.

Industrial systems, such as a power plant, are critical infras-
tructures where accurate anomaly detection is import to plant
operation. The increasing deployment of sensors and system-
atic data collection systems present an opportunity to bring
deep neural networks to bear on this problem. On the other

Feng Xue et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

hand, industrial systems are very complex by design. A typi-
cal industrial system has hundreds of tags including measure-
ments, control signals, and operation settings. There are still
challenges on a number of fronts when employing deep learn-
ing neural networks for industrial system anomaly detection:

• what is a proper problem formulation for neural network
training?

• what data preprocess one should carry to present data to
a neural network?

• what backbone neural network architecture is a preferred
choice?

In the pursuit of these questions, this paper present a case
study on the Secure Water Treatment (SWaT) testbed dataset
(Goh, Adepu, Junejo, & Mathur, 2016). We formulate the
problem as a self-supervised learning setting where data un-
der normal operation are used to train a deep neural network
autoregressive model, i.e., use a window of time series data
to predict future data values. Self-supervised learning is a
form of learning that trains a neural network on an artificially
formulated learning task to learn a useful representation of
the underlying problem. In our case, an autoregressive model
is formulated as the self-supervised task to learn the repre-
sentation of the underlying system’s dynamic behavior under
normal conditions, while expect higher model vs. measure-
ment discrepancies under faulty conditions. In this regard,
we can leverage the abundance of normal operation data usu-
ally available in real-world industrial applications. With this
setup, we do not need to go through a laboriously manual
labeling effort to select normal operation data. Instead, a
heuristic procedure based on maintenance records can be eas-
ily used to define normal operation data. The fact that the
majority of the operation data is normal also helps to ensure
reasonable training data quality. In this paper, we also intro-
duce vector embedding and joint losses as a way to deal with
discrete control settings in real world applications.

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

2. RELATED WORK

Anomaly detection (AD) has been a extensively studied re-
search topic. In literature, there are numerous AD meth-
ods available (Chandola, Banerjee, & Kumar, 2009; Zimek,
Schubert, & Kriegel, 2012; Chalapathy & Chawla, 2019).
Those anomaly detection methods can be broadly catego-
rized into either supervised or semi-supervised. While su-
pervised methods require both normal and abnormal sam-
ples, semi-supervised methods work on normal data only.
Since anomalies are a rare event in most of real-world ap-
plications, semi-supervised methods tend to be better fitted
and thus have been more popularly used. Given abundant
samples of normal operation, semi-supervised anomaly de-
tection learns the normal behavior (or to learn the boundary
of the normal samples) and then detect any deviations from
the normal behavior as anomalies. Traditional methods in
both supervised and semi-supervised groups consists of var-
ious statistics and machine learning techniques. The survey
papers (Chandola et al., 2009; Zimek et al., 2012) provided
a good summary of these traditional methods. Our focus in
this paper is on using deep learning for anomaly detection in
the context of industrial systems applications where data used
for detecting anomaly are primarily time-series sensor mea-
surements. In this scope, deep learning has been dominantly
used as for learning normal behavior, thus as semi-supervised
anomaly detection. Generally speaking, those deep learning-
based anomaly detection methods have two broad settings,
indirect (2-step) and direct(1-step) (Yan, 2019; Chalapathy &
Chawla, 2019).

Indirect setting. In indirect setting, deep learning is used as
feature learning (or representation learning) and such learned
features are then used as inputs to conventional detection
models. In this category, deep generative networks, e.g., au-
toencoder (AE) (Yan, 2019; Zhou & Paffenroth, 2017), vari-
ational autoencoder (VAE) (Chen, Shi, Zhao, & Liang, 2019;
An & Cho, 2015) and GANs (Li et al., 2019; Choi, Lim,
Choi, & Kim, 2020), have been the popular choice in litera-
ture. While the network architectures used in the deep genera-
tive networks can be feedforward (FF), convolutional (CNN),
and recurrent (RNN), for time series data, CNN and RNN
are more effective as they are able to capture the temporal de-
pendence of time series more effectively. To capture temporal
dependence of time series, CNN (Wen & Keyes, 2019; Zhang
et al., 2018) and LSTM (Malhotra, Vig, Shroff, & Agarwal,
2015; Chen et al., 2019; Guo et al., 2018) have been used as
the network architecture of the autoencoder. Several works
also introduced attention mechanism into time-series mod-
eling, for example, (Yuan et al., 2018; Zhang et al., 2018).
Furthermore, prediction-based deep learning for learning nor-
mal behavior has also been explored (Ahmad, Lavin, Purdy,
& Agha, 2017). For example, in (Munir, Siddiqui, Dengel,
& Ahmed, 2019), a time series prediction model that takes
a window of time series as the input and predict next time

𝑥"#$ 𝑥"#% 𝑥"𝑥"#& …

…

𝑥'"𝑓(𝑥"#)

Figure 1. Autoregressive formulation: x̂t = f(xt−)

stamp was used to model the time series normality. A deep
CNN was used as the prediction model and the Euclidean dis-
tance of the prediction errors was used as the anomaly score
for anomaly detection.

Direct setting. Unlike in indirect setting where the network
training objective is not customized for anomaly detection, in
Direct (1-step) setting, both feature learning and the anomaly
detection model are learned jointly. Doing so ensures the net-
work is optimal in terms of the objective criteria for anomaly
detection. Literature in this category is relatively sparse. In
(Ruff et al., 2018), a LSTM-based anomaly detection frame-
work was introduced, where the parameters of both the LSTM
and the anomaly detectors (OC-SVM and SVDD) are jointly
optimized. Other works include (Chalapathy, Menon, &
Chawla, 2018) and (Ergen & Kozat, 2019).

3. PROBLEM FORMULATION

In a typical industrial setting, we usually have abundance of
normal operation data, while there are only very small num-
ber of faulty cases. Our formulation follows a self-supervised
format, in which a model is trained to learn a representation
of normal operation. Here, we formulate the self-supervised
task as an autoregressive task. We want the model to learn
an autoregressive representation of the underlying system, as
shown in Figure 1. Let xt be a data sample at time t, the
autoregressive learning is try to estimate xt given all obser-
vations up to time t− 1. The model tries to learn an function,
x̂t = f(xt−), such that x̂t is as close to the observation xt
as possible. In practice, we use a window length of T as
the input instead of all the observations prior to time t. This
window length is a parameter to be adjusted for a particular
application.

For a given problem, we use the normal operation data to
train a model to approximate x̂t = f(xt−). The deviation
between estimated and measured observation is obtained by
a form of distance function: dt = d(x̂t, xt). Such deviation
is a measure of deviations to normal operation. Hence, a data
sample with a deviation that is above a defined threshold is
regarded as anomalous.

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 2. Discrete data embedding as input data to backbone
models

4. DEEP LEARNING ARCHITECTURES

A number of neural network architecture can be used to
learn the mentioned functional approximation. We explored
Long Short-Term Memory (LSTM) recurrent neural network
(Hochreiter & Schmidhuber, 1997), Convolution Neural Net-
work (CNN), and traditionally fully connected Neural Net-
work (NN) for our purpose. In the following subsections, we
will describe the details of the models and setups for our ex-
periments.

4.1. Discrete Input Embedding

In industrial applications, the time series data usually com-
prise of both discrete and continuous values. Sensor mea-
surements are mostly collected as continuous signals, while
control settings can be either continuous or discrete. For dis-
crete data, especially non-ordinal data, a direct normalization
that map these discrete values to a continuous space is rather
arbitrary. To deal with this issue, we propose to jointly learn
an embedding vector for each discrete variable along with
other model parameters. This is inspired by neural language
modeling approaches (Bengio, Ducharme, Vincent, & Jau-
vin, 2003), in which each word is mapped to a vector space
of fixed size (the vector is called the embedding of the word).
In our case, the embedding is a vector representation of the
underlying discrete variable. These embedding vectors are
included in the model parameters that behave as regular pa-
rameters. They are randomly initialized and then modified by
the training algorithm like the other parameters in the model.
This embedding transformation is illustrated in Figure 2. For
each data sample xt in the time series data, this embedding
transformation is performed first before it is presented as in-
put to the backbone model.

4.2. Mix Type of Target Variables

In the autoregressive setting, we have the choice to select a
subset of the time series variables to serve as the target. A
common setup is to estimate the measurement variables, i.e.
usually continuous variables. However, it maybe beneficial
to estimate the discrete variables as well. These discrete vari-
ables usually represent control settings. It might be advan-
tageous to have the model to learn a control setting for the

next time step given the current the state. Therefore, we have
investigated two types of target variables in our study: 1) con-
tinuous target variables only; 2) mix type of continuous and
discrete target variables.

The two settings are different mainly in their loss configura-
tions. For continuous variables only setting, we use the mean
square error as the loss function. Let xct as the continuous
target variables, the loss is simply as in Eq. 1, in which C is
the set of continuous target variables.

Lmse =
1

C

∑
c∈C

1

|C|
(x̂ct − xct)2 (1)

For the mix type setting, the loss is a joint of two parts: mean
square error for continuous values and cross entropy for dis-
crete values. In this case, the number of output for each dis-
crete target variable is determined by its cardinality. For each
discrete target variable d, the model output x̂dt is a probability
vector with a length |d|, while the corresponding target vari-
able is encoded as a one-hot vector. In this way, the cross
entropy loss can be applied to these outputs. D is the set of
discrete target variables.

Lce = −
∑
d∈D

∑
i∈|d|

xdi
t log x̂di t (2)

For continuous variables only setting, loss L = Lmse. In the
mixed type setting, the total loss is L = Lmse + wceLce, in
which wce is the weight on cross entropy loss. We refer this
as the joint approach in the experiment discussion later.

4.3. Recurrent Neural Network

The RNN network we use involves layers of LSTM and a
linear layer. As show in Figure 3, the input vector is fed to
the LSTM cell one at a time, and there is a linear layer that
maps the LSTM hidden state at each time step to the target
variables.

Figure 3. RNN architecture for autoregressive representation

In the training phase of the LSTM, we have the network to
output all the estimation at each time step. There, we could

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

use all the outputs in the loss function or selective using only
the last time step output. In testing, only the last time step is
used as the estimation.

4.4. Convolution and Fully Connected Neural Network

For Convolution Neural Network (CNN) and fully connected
Neural Network (NN), a time series [xt−T , ..., xt−1] with
length of T is the input to the network. In the case the CNN,
the input is passed through layers of 1-d convolution. This
is followed by a fully connected layer to map all the features
from convolution operation to output x̂t. In the case of NN,
the input is passed through multiple fully connected layers,
and output x̂t.

4.5. Deep Support Vector Data Description Model

Traditional SVDD, a SVM-based one-class classifier, finds
the smallest hypersphere that encloses the normal data in fea-
ture space. To be effective, the traditional SVDD, or shal-
low SVDD, requires labor intensive feature engineering. To
address this issue, recently Ruff et al (Ruff et al., 2018) pro-
posed the Deep SVDD, a neural network with a specially de-
fined objective function such that it can learn feature repre-
sentation and the smallest hypersphere together. They de-
fined the optimization objective as in Eq. 3. It has two
terms. The first one represents the average distance between
the samples mapped to feature representation space via the
network,ψ

(
xxxi;WWW

)
, and the center of the hypersphere, ccc. And

the second one is the standard regularization term.

Lsvdd =
1

n

n∑
i=1

∥∥ψ(xxxi;WWW)− ccc∥∥2 + λ

2

L∑
l=1

∥∥WWW l
∥∥2
F

(3)

The network parameters are optimized using back propaga-
tion with the stochastic gradient descent (SGD). After the net-
work is trained using normal samples, the anomaly score for
a test sample xxxt is given as: s(xxxt) =

∥∥ψ(xxxt;WWW)− ccc∥∥2.

5. CASE STUDY

We use the SWaT testbed data (Goh et al., 2016) from Uni-
versity of Technology and Design in Singapore for our case
study. The testbed was built to facilitate cyber-security re-
search. SWaT is a scaled down water treatment plant, ca-
pable of producing five gallons per minute of safe drinking
water. It replicates a typical modern water treatment plant in
cities. Raw water is treated in a six stage process, consisting
of physical processes such as ultra filtration, de-chlorination,
and reverse osmosis. SWaT consists of a layered communica-
tion network, Programmable Logic Controllers (PLCs), Hu-
man Machine Interfaces (HMIs), a Supervisory Control and
Data Acquisition (SCADA) workstation, and a Historian. The

plant process is shown in Figure 4. Details of the data collec-
tion and cyber attacks are described in (Goh et al., 2016).

Figure 4. SWaT testbed process overview

5.1. Dataset

The data consists of 11 days continuous operation of the
SWaT testbed. The first 7 days consist of a normal operation
period. Cyber attacks were launched during the remaining
four days. These attacks were of various intents and lasted
between a few minutes to an hour. Over the whole period,
data sample is collected at a frequency of 1/second. During
the last 4 days, 41 episodes of cyber attack are simulated on
the testbed. 36 of them are physical attacks. From a fault de-
tection point view, these simulated physical cyber attacks are
equivalent to malfunction of sensors or actuators. A sample
of the 41 episodes are listed in Figure 5. For example, attacks
1, 2, and 4 are actual physical changes. This can be regarded
as simulated malfunction of valves at different stages of water
treatment process. Attack 3 can be regarded as a small drift
of the sensor reading. Attack 5 is all about network, which
we do not consider them in the study. We consider the 36
attacks that are physical in nature, which can be regarded as
simulated faults in an industrial system.

Figure 5. Sample attacks from SWaT dataset

5.2. Performance Evaluation

In an industrial setting, operators typically concern about im-
proving the detection rate of fault events while reducing the
number of false positives over a certain period of normal op-
eration. While fault event has only a small number of occur-
rences, normal operation spans over a long period of time. In
real world, we thus would like to count the true positives at
the event level, while false positives at the model’s decision
level.

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

In the SWaT dataset, there are no repeated events. We
adopted a sample based evaluation method. In this case, there
is an event start time and end time. Data samples from the
time window [Es − T,Ee + T] are considered faulty oper-
ations. Since we do not have clear understanding about the
underlying behavior of the system after a fault. It may take
long time for the system to recover back to its normal op-
eration condition. Such time to recovery would also depend
on fault types and the underlying physical reactions and con-
trols. In order to take such a phenomena into consideration,
we define normal operation in two ways. One way is to take
a separate test data (the last 1 day in our experiments) out of
the first 7 days of normal operation period. This will ensure
the quality of normal operation data. We refer this as normal
hold off measure. The other way is to treat all the attack data
samples that fall outside of all the attack event windows as
normal operation. We refer this as attack data only measure.
As we will discuss in the later section, such treatment may be
prone to issues.

In our experiments, we use both ROC (Receiver Operating
Characteristic) and PR (Precision-Recall) curve to evaluate
the performance. AUC (Area Under Curve) and Average Pre-
cision are calculated as the overall performance measure.

5.3. Model Settings

After removing all the constant variable from the combined
normal and faulty data, we have 25 continuous variables and
20 discrete variables. In the standard setup, we use all the
variables as inputs to estimate all the continuous variables at
the next time step. In the joint estimation setup, the model
learns to estimate both continuous and discrete variables.
Data samples are kept as the original data, which are sam-
pled at 1/second.

For LSTM, we use 2 layers each with 50 hidden units, fol-
lowed by a linear layer that map the hidden variable to output.
For joint loss with LSTM as the backbone, each discrete vari-
able has a vector length of its cardinality in the output. We
set wce = 1e − 2 in our experiment. We use a time window
T = 120 for both settings.

For CNN, we use 2 layers each with 50 channels of kernel
size of 3, stride of 1, followed by a linear layer that map the
output of the last convolutional layer to the final output, with
time window size of T = 10.

For fully connected neural network, we use 2 layers each with
50 hidden units, followed by a linear layer that map the out-
put of the last layer to the final output, using the same time
window size is T = 10.

For deepDVDD, the mapping network is a feed forward neu-
ral network with one hidden layer. The number of neurons in
the hidden layer is 50. The number of outputs (mapped di-

mension) of the network is 20. We use window size T = 120
in this case.

In all the experiments, we use the Adam optimizer (Kingma
& Ba, 2015) with β1 = 0.9, β2 = 0.999, ε = 10−8, and a
learning rate of lr = 10−3. LSTM model uses the standard
sigmoid and tanh activation function, while ReLU is used in
CNN and NN model.

We adopted a longer time window for LSTM and found it
beneficiary. On the hand, a longer time window did not ben-
efit CNN and fully connected neural network models. Hence,
we adopted a shorter window for those models.

5.4. Result and Discussion

The LSTM results are shown in Figure 6. We can see the
a big different between the two measures described earlier.
With normal data hold off measure, we almost achieved per-
fect performance. However, using attack data only, the per-
formance is not ideal. A further investigation indicates that
that the system may never restore back to normal operation
after a number of attacks.

Figure 6. ROC and PR curve for LSTM

As shown in Figure 7, we can see that operation regime has
shifted drastically after a number of attacks. P201 starts to
oscillate between two settings and AIT201 starts to drift from
normal operation regimes. In our experiments, almost all this
period of operation is flagged as abnormal. We would argue
that the model behavior is an appropriate one given such an
out of normal operation.

We thus conducted an experiment of dropping variable A201
for both training and testing. We see a clear improvement on
attack measurement as shown in Figure 8.

As far as training loss, we conducted experiments to com-
pare two ways: 1) using all the outputs from the window; 2)
using only the last output. From a estimation error point of
view, it seems that the second way performs better as shown
in Figure 9. Maintaining consistency between training and
inference provides better performance.

In addition, we also demonstrated that joint LSTM achieved
smaller representation error comparing with standard LSTM,
as showed in Figure 10 in the same experiment setting.

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 7. Signal and control operation regime change: red
curve for attack period of time, blue for normal operation;
P201 has maintained constant during normal operation

Figure 8. ROC and PR curve for LSTM after dropping A201

For overall performance with attack data only measure, the
different models perform similarly as shown in Table 1, al-
though LSTM with joint loss show some advantages.

Table 1. Fault detection comparison.

Methods AUC Ave Precision
LSTM 0.838 0.768
CNN 0.869 0.788
NN 0.874 0.788
LSTM joint 0.881 0.815
DeepSVDD 0.834 0.748

For an easy comparison with a recent study (Inoue, Yamagata,
Chen, Poskitt, & Sun, 2017) on the same dataset, we also
select the best point solution based on F score. In Table 2,
we compared results with two methods as reported in (Inoue
et al., 2017): DNN and one-class SVM. The DNN method
uses both LSTM and a staged partial estimation of actuator
and sensor measurement for estimating outlier factor. LSTM
with standard setup produce better performance in term of
both precision and recall, while a number of other models in
our setup produced better F scores.

6. CONCLUSION

In this paper, we described a setup on using deep neu-
ral networks for anomaly detection for industrial systems.
The anomaly detection approach is formulated as a self-
supervised task, i.e., learn the dynamic relationship of an

Figure 9. Testing error histogram from normal operation test
data. Top: train with loss from the whole window; Bottom:
train with loss from the last output only

Figure 10. Testing error histogram from test normal operation
data. Top: standard LSTM; Bottom: joint trained LSTM

industrial system as an autoregressive model. We intro-
duced a number of techniques for dealing with industrial data
when both discrete settings and continuous measurements are
present. We also demonstrated that joint estimation of both
continuous and discrete values can reduce estimation error
and produce better overall performance comparing with its
regular counterpart. We also compared a number of neural
network architectures with a recent study on the same SWaT
dataset, and showed that a number of models in our setup pro-
duce comparable or even better results. We also pointed out
an issue with the SWaT dataset, and showed that the system
operation largely drifted after some episodes of attacks. This
makes the commonly adopted performance measure not reli-
able for the purpose of developing anomaly detection meth-
ods for industrial settings. As future work, we plan to conduct
experiments using a different dataset to give us better views
into the research questions we have posed.

ACKNOWLEDGMENT

This material is based upon work supported by the Depart-
ment of Energy, National Energy Technology Laboratory un-
der Award Number DE-FE0031763.

REFERENCES

Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017,
November). Unsupervised real-time anomaly detection
for streaming data. Neurocomputing, 262, 134–147.
doi: 10.1016/j.neucom.2017.04.070

An, J., & Cho, S. (2015). Variational autoencoder based
anomaly detection using reconstruction probability..

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003).
A Neural Probabilistic Language Model. Journal of

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Table 2. Precision and recall select by best F score

Methods Precision Recall F score
Reference DNN 0.98295 0.67847 0.80281

One-class SVM 0.92500 0.69901 0.79628
Ours LSTM 0.99402 0.68635 0.81202

CNN 0.96897 0.67654 0.79677
NN 0.96670 0.72458 0.82831
LSTM joint 0.93730 0.71563 0.81161
DeepSVDD 0.99060 0.63449 0.77353

Machine Learning Research, 3(Feb), 1137–1155.
Chalapathy, R., & Chawla, S. (2019). Deep learning for

anomaly detection: A survey. ArXiv, abs/1901.03407.
Chalapathy, R., Menon, A. K., & Chawla, S. (2018). Anomaly

detection using one-class neural networks.
Chandola, V., Banerjee, A., & Kumar, V. (2009, July).

Anomaly detection: A survey. ACM Computing Sur-
veys, 41(3), 1–58. doi: 10.1145/1541880.1541882

Chen, R.-Q., Shi, G.-H., Zhao, W.-L., & Liang, C.-H. (2019).
Sequential vae-lstm for anomaly detection on time se-
ries.

Choi, Y., Lim, H., Choi, H., & Kim, I. (2020). Gan-based
anomaly detection and localization of multivariate time
series data for power plant. In 2020 ieee international
conference on big data and smart computing (bigcomp)
(p. 71-74).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.
(2019, May). BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding.
arXiv:1810.04805 [cs]. (arXiv: 1810.04805)

Ergen, T., & Kozat, S. S. (2019). Unsupervised anomaly
detection with lstm neural networks. IEEE Transac-
tions on Neural Networks and Learning Systems, 1–15.
doi: 10.1109/tnnls.2019.2935975

Goh, J., Adepu, S., Junejo, K. N., & Mathur, A.
(2016). A Dataset to Support Research in the De-
sign of Secure Water Treatment Systems. In CRITIS.
doi: 10.1007/978-3-319-71368-7-8

Guo, Y., Liao, W., Wang, Q., Yu, L., Ji, T., & Li, P. (2018).
Multidimensional time series anomaly detection: A
gru-based gaussian mixture variational autoencoder ap-
proach. In Acml.

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017, Octo-
ber). Mask R-CNN. In 2017 IEEE International Con-
ference on Computer Vision (ICCV) (pp. 2980–2988).
Venice: IEEE. doi: 10.1109/ICCV.2017.322

He, K., Zhang, X., Ren, S., & Sun, J. (2016, June).
Deep Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR) (pp. 770–778). Las Vegas,
NV, USA: IEEE. doi: 10.1109/CVPR.2016.90

Hochreiter, S., & Schmidhuber, J. (1997, November). Long
Short-Term Memory. Neural Computation, 9(8), 1735–
1780. doi: 10.1162/neco.1997.9.8.1735

Inoue, J., Yamagata, Y., Chen, Y., Poskitt, C. M., &
Sun, J. (2017, November). Anomaly Detec-
tion for a Water Treatment System Using Unsu-
pervised Machine Learning. In 2017 IEEE In-
ternational Conference on Data Mining Workshops
(ICDMW) (pp. 1058–1065). New Orleans, LA: IEEE.
doi: 10.1109/ICDMW.2017.149

Khan, S., & Yairi, T. (2018, July). A review on the appli-
cation of deep learning in system health management.
Mechanical Systems and Signal Processing, 107, 241–
265. doi: 10.1016/j.ymssp.2017.11.024

Kingma, D. P., & Ba, J. (2015). Adam: A Method for
Stochastic Optimization. ICLR. (arXiv: 1412.6980)

Li, D., Chen, D., Jin, B., Shi, L., Goh, J., & Ng, S.-K.
(2019). Mad-gan: Multivariate anomaly detection for
time series data with generative adversarial networks.
In I. V. Tetko, V. Kůrková, P. Karpov, & F. Theis
(Eds.), Artificial neural networks and machine learn-
ing – icann 2019: Text and time series (pp. 703–716).
Cham: Springer International Publishing.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., & Song, L.
(2017, July). SphereFace: Deep Hypersphere Em-
bedding for Face Recognition. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR) (pp. 6738–6746). Honolulu, HI: IEEE.
doi: 10.1109/CVPR.2017.713

Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015). Long
short term memory networks for anomaly detection in
time series. In Esann.

Munir, M., Siddiqui, S. A., Dengel, A., & Ahmed, S. (2019).
DeepAnT: A deep learning approach for unsupervised
anomaly detection in time series. IEEE Access, 7,
1991–2005. doi: 10.1109/ACCESS.2018.2886457

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Sid-
diqui, S. A., Binder, A., . . . Kloft, M. (2018, 10–
15 Jul). Deep one-class classification. In J. Dy &
A. Krause (Eds.), Proceedings of the 35th interna-
tional conference on machine learning (Vol. 80, pp.
4393–4402). Stockholmsmässan, Stockholm Sweden:
PMLR.

Wen, T., & Keyes, R. (2019). Time series anomaly detec-
tion using convolutional neural networks and transfer
learning.

Yan, W. (2019, December). Detecting gas turbine com-
bustor anomalies using semi-supervised anomaly de-
tection with deep representation learning. Cognitive
Computation. doi: 10.1007/s12559-019-09710-7

Yuan, Y., Xun, G., Ma, F., Wang, Y., Du, N., Jia, K., . . .
Zhang, A. (2018). Muvan: A multi-view attention net-
work for multivariate temporal data. In 2018 ieee in-
ternational conference on data mining (icdm) (p. 717-
726).

Zhang, C., Song, D., Chen, Y., Feng, X., Lumezanu, C.,
Cheng, W., . . . Chawla, N. V. (2018). A deep neural

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

network for unsupervised anomaly detection and diag-
nosis in multivariate time series data.

Zhou, C., & Paffenroth, R. C. (2017). Anomaly detection
with robust deep autoencoders. In Proceedings of the
23rd acm sigkdd international conference on knowl-
edge discovery and data mining (p. 665–674). New

York, NY, USA: Association for Computing Machin-
ery. doi: 10.1145/3097983.3098052

Zimek, A., Schubert, E., & Kriegel, H.-P. (2012, October).
A survey on unsupervised outlier detection in high-
dimensional numerical data. Stat. Anal. Data Min.,
5(5), 363–387. doi: 10.1002/sam.11161

8

