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ABSTRACT

Enabling operations of unmanned aerial vehicles (UAVs) in
low-altitude airspace demands the need of robust risk moni-
toring framework for assessing the safety of airspace, ground-
structures and people. As widespread applications emerge,
the need of risk assessment becomes increasingly impor-
tant for UAV flights beyond visual line-of-sight, especially
subjected to off-nominal conditions introduced by compo-
nent failures, degraded controllability or environmental dis-
turbances such as wind gusts in an urban canyon. From a
safety perspective, collision with obstacles can be detrimen-
tal not only to the vehicle and payload, but also to the struc-
ture and people on ground. Although it is safe to assume
that approved UAVs would be equipped with collision avoid-
ance systems, risk of collision which can be predicted for a
flight trajectory even before the UAV encounters any obstacle
is beneficial to resolve contingencies in its decision-making
under off-nominal conditions. In this paper, a framework is
presented for computing the risk of collision with obstacle
based on a UAV’s predicted trajectory, proximity to static and
dynamic obstacles, sub-system state-of-health and external
wind conditions. The conditional probability of trajectory de-
viation is generated using a Bayesian Belief Network (BBN)
based on on-board sensor measurements. Further, a kine-
matic 3-DOF model is implemented to compute deviation in
UAV’s trajectory subjected to one case study of off-nominal
condition i.e. wind gusts. Finally, the integrated risk factor
is demonstrated on real data from experimental flights of an
octocopter at NASA Langley Research Center, in presence of
simulated obstacles and wind conditions. The proposed ap-
proach would enable risk-informed decision making process
for timely mitigation of current and future unsafe events.
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1. INTRODUCTION

Airspace is anticipated to undergo an enormous transforma-
tion in the future, with the incorporation of unmanned aerial
vehicles (UAVs) (Kopardekar et al., 2016; FAA, 2018), both
in commercial and military sectors. Owing to the substantial
benefits of UAVs in multiple application areas such as infras-
tructure monitoring, delivery of goods, precision agriculture,
public safety, search and rescue, disaster relief and weather
monitoring, all sectors of industry, academia, and the gov-
ernment have been working towards a seamless integration
of sUAS into the National Airspace System (NAS) (National
Academies of Sciences, Medicine, et al., 2018). The final
goal of the technology development is to enable UAV flights
in low-altitude airspace (upto 500ft) as well as beyond visual
line of sight (BVLOS) operations over urban environment to
extract full potential of such operations.

However, commercial implementation of these vehicles into
the airspace has been relatively slow due to high risks asso-
ciated with them. In order to enable wide-spread UAV oper-
ations in the airspace, it is imperative to demonstrate safety
of such operations. Hazards need to be identified in-time
and appropriate risk mitigation procedures need to be exe-
cuted in the UAV integration. Currently, small UAV design
does not require high reliability standards (King, Bertapelle,
& Moses, 2005; Freeman & Balas, 2014), suggesting that
failure rates of sub-systems and components during opera-
tions may be substantially higher than what has been seen in
traditional manned aviation. Small UAVs have also intrinsic
limitations due to their size and cost. They cannot carry heavy
or expensive on-board sensors, computing systems or hard-
ware for large-bandwidth communications with the ground
station, thus limiting the ability to perform self-diagnosis and
prognosis. For those same reasons, batteries installed in those
small vehicles are relatively small, and the discharge rate dur-
ing flight may be faster than expected due to environmental
conditions like temperature or wind. Further, lightweight ve-
hicles suffer external disturbances like wind gusts and turbu-
lence more frequently than larger aircrafts. It is known that
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wind tunnel effects caused by buildings or other obstacles in
urban environment may jeopardize vehicle stability, but they
are extremely challenging to model and therefore may not be
accurately predicted in-time.

Safety monitoring frameworks similar to the ones devel-
oped for manned aircraft (Roychoudhury et al., 2015, 2016;
Spirkovska, Roychoudhury, Daigle, & Goebel, 2017) may
enhance unmanned traffic management with in-time mon-
itoring and prediction tools for low-altitude operating ve-
hicles. NASA’s Aeronautics Research Mission Directorate
(ARMD) strategic plan directs the development of advanced
in-time safety assurance tools that can monitor, assess and
mitigate risks for UAV operations (Aeronautics & Adminis-
tration, 2017). Under that initiative, several studies have been
directed to prediction of future trajectory (Corbetta, Banerjee,
Okolo, Gorospe, & Luchinsky, 2019; Banerjee & Corbetta,
2020), estimation of remaining battery life (Daigle & Kulka-
rni, 2016), estimation of vibrational anomalies (Banerjee,
Okolo, & Moore, 2020) as well as assessment of risk to pop-
ulation on ground in the event of a crash (Ancel, Capristan,
Foster, & Condotta, 2019). Weibel & Hansman (Weibel &
Hansman, 2004) and Clothier et al (Clothier, Walker, Ful-
ton, & Campbell, 2007) estimated expected rate of casualties
per flight hour based on population density, area of exposure
and failure rate. Kim (Kim, 2019) conducted a third-party
risk assessment study for small UAVs in the event of a mid-
air collision with another UAV. In all such studies, failures
have been comprehended as an event leading to uncontrolled
descent or collision that affect the population on ground di-
rectly. However, failure may not necessarily lead to a crash.
Off-nominal events such as sudden wind gusts or degraded
motor can cause vehicle instability forcing it to deviate from
its planned path and lead to hitting obstacles. To the best of
our knowledge, risk assessment to obstacle collision is rela-
tively unexplored in the literature.

Many researchers have discussed frameworks for contin-
gency plans when UAV encounters a dangerous situation dur-
ing flight such as UAV lost communication link or fuel is low
and cannot maintain the original planned path. In these, the
operator has to provide fuel status, weather status or engine
status to the decision making system which then creates case-
based reasoning (Zhou & Kwan, 2018; Pastor, Royo, Santa-
maria, Prats, & Barrado, 2012). However, none of these stud-
ies computes in-time risk-aware contingencies that considers
vehicle health prognostics in the loop. Although it is safe to
assume that approved UAVs would be equipped with colli-
sion avoidance systems, risk of obstacle collision which can
be predicted for a flight trajectory even before the UAV en-
counters any obstacle is beneficial to flight planning as well as
resolving contingencies in its decision-making with a higher
prediction horizon.

In this paper, a risk-assessment framework is presented par-

ticularly to compute risk of collision of UAVs with static ob-
stacles. The risk likelihood and severity is defined followed
by a few case studies demonstrating the effect of multiple fac-
tors on the risk severity. The case studies are represented on
a real UAV flying in a simulated environment. .

2. RISK ASSESSMENT FRAMEWORK OF OBSTACLE
COLLISION

In previous studies, third-party risk on the ground population
has been described as a function of probability of crash or
un-powered descent of the UAV caused by off-nominal con-
ditions. For example, Clothier et al. (Clothier et al., 2007)
described estimated number of casualties per flight hour as
Eq. (1). pfailure is the probability of failure of the UAV, ploc
is the probability of impacting at a specific location on ground
defined in terms of a binomial distribution, Aexp is the area
of exposure on the ground, ρp is the population density and
pcas denotes the probability of casualty is rate of fatality of a
person being exposed to ground impact by the UAV.

Ec = pfailure ploc Aexp ρp pcas (1)

Similarly Ancel et al. defined non-Participant casualty risk in
terms of expected casualties on ground, as denoted in Eq. (2)
(Ancel, Capristan, Foster, & Condotta, 2017).

Ecj =

k∑
i=1

PIkAcjρpopj
(2)

where, PIk is the probability of the UAV impacting the kth

grid cell on ground, ρpopj
is the population density in the jth

sheltering unit obtained from survey data and Acj is the area
of casualty. Acj is further dependent on the vehicle size, off-
nominal trajectory and impact point estimation. Additionally,
the authors described the URAF methodology which uses a
modified version of the risk matrix developed for un-manned
aircraft systems, as cited within FAA’s Safety Management
System Manual (Administration, 2017) to establish and vi-
sualize real-time UAS flight risks. The rows in the matrix,
as denoted in Fig. 1, represent mishap likelihood and the
columns provide severity categories where intersection of the
two signifies the associated risk to ground casualty.

Figure 1. Notional risk matrix by FAA (Ancel et al., 2017).
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Figure 2. Bayesian Belief Network (Ancel et al., 2017) with additional node for trajectory deviation caused by wind or degraded
controllability.

Based on the above formulations, likelihood of risk as-
sociated with obstacle collision for a UAV is defined as
ptraj−dev or probability of trajectory deviation caused by
any off-nominal event (wind gusts, degraded controllability
etc.). This shall be computed using Bayesian Belief Network
(BBN) that are most suited for extracting the causal effect
between measurements and events and computing the condi-
tional probabilities of events based on measured observations
(Ancel et al., 2017). The BBN model continuously updates
the input values for GPS Count, GPS Status, Remaining Bat-
tery, Battery Voltage, Telemetry Health, and Wind Speed de-
pendent upon the aircraft altitude. These values are then used
to calculate the probability of associated system failures, as
depicted in figure 2.

Further, severity of the risk RISKobs associated with obsta-
cle collision is proposed in this paper as a function of proba-
bility of collision with obstacle pcol−obs, area of the vehicle
exposed to the obstacle when subjected to collision Aexp and
probability that the location of collision represents an obsta-
cle pobst.

RISKobs = pcol−obs Aexp pobst (3)

Intuitively, the area of exposure Aexp is directly dependent
on the size of the vehicle subjected to collision. On the other
hand, pobst is computed based on the error associated with ob-
stacle measurements. For a fixed obstacles such as trees and
buildings, the obstacle locations and sizes are typically ob-
tained from navigation sensors such as GNSS, IMU, LiDAR
and cameras (Ilci & Toth, 2020). If the error in the navigation
measurements is assumed to adhere to a normal distribution

Figure 3. Schematic of pobst calculation.

with mean µ and variance of σ2, the pobst can be defined as
the cumulative distribution function, denoted in Eq. (4). Here
x is the position at which collision with the obstacle takes
place, as shown in figure 3.

pobst =
1

2
[1 + erf(

x− µ
σobs
√
2
)] (4)

The other critical parameter in the risk severity formulation is
the probability of collision pcol−obs which depends on a num-
ber of factors such as proximity of UAV from the obstacle, lo-
cal wind field magnitude and direction as well as the state-of-
health of the propeller unit. Both wind and degraded propeller
capability of a UAV causes deviation of its trajectory from its
desired flight path which may yield to collision with a sur-
rounding obstacle. The formulation of collision probability,
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taking wind field parameters and state-of-health of vehicle, is
described in the following section.

3. PROBABILITY OF OBSTACLE COLLISION

In this study, the effect of wind on trajectory deviation
is defined using simple kinematic equations on a vehicle
point-mass model (Valeriy & Ihor, 2018; D’Souza, Ishihara,
Nikaido, & Hasseeb, 2016). The vehicle state variables con-
sidered are the UAV airspeed V , heading (χ) determined by
the directional path from one waypoint to another and flight
path angle (γ). The 3D coordinates of each waypoint is de-
fined by its longitude (θ), latitude (φ), and altitude (h). The
vehicle velocity ~VUAV given heading (χ) and flight path an-
gle (γ) is given by:

~VUAV = V cos γ cosχî+ V cos γ sinχĵ + V sin γk̂ (5)

Figure 4. UAV coordinate system (Valeriy & Ihor, 2018).

Considering wind velocity vector as ~Vwind and obtaining ve-
hicle’s cruise speed ~VUAV from Eq. (5), the total vehicle ve-
locity is given by ~Vtotal.

~Vwind = Uî+ V ĵ +Wĵ (6)
~Vtotal = ~VUAV + ~Vwind (7)

The flight path angle is defined in the angle between the di-
rection at which the vehicle’s nose is pointing and the course
over ground, as shown in Figure 4. Assuming the vehicle’s
flight path angle (γ) is zero under no-wind condition, any
non-zero value of γ arises due to the vertical component of
the wind speed. Hence the induced flight angle γwind caused
by wind is given by equation (8).

γwind = arctan
W

V cos γ + U
(8)

Similarly, the horizontal deviation of the vehicle changes its
heading (χ) and is caused by the horizontal components of
the wind. Given the estimated time from detection of distur-

bance on the vehicle to its recovery to original trajectory is
denoted by tcontrol, the new position of the UAV deviated by
wind (θdev, φdev, hdev) at every position in the original ref-
erence trajectory (θref , φref , href ) is given by Eqs. (9)-(11).
tcontrol is dependent on UAV controller characteristics and
state-of-health of its maneuver components.

θdev = tcontrol
|~Vtotal| sinχ
R cosφref

+ θref (9)

φdev = tcontrol
|~Vtotal| cosχ

R
+ φref (10)

hdev = tcontrol |~Vtotal| sin γwind + href (11)

Collision with an obstacle occurs when the deviated position
of the UAV (θdev, φdev, hdev) hits or lies within the boundary
of an obstacle. In practical applications, the wind velocity is
measured or estimated at every point on the trajectory and be
associated with stochasticity depending on the sensor char-
acteristics and estimation process. Assuming Gaussian dis-
tribution of the wind field velocity is interpreted in terms of
ns samples associated with probabilities, each deviated posi-
tion in the trajectory is computed for ns samples, according
to Eqs. (9)-(11). The samples which hit or lie within the
boundary of any obstacle after tcontrol seconds are identified
as the collided samples nobs and the probability of obstacle
collision pcol−obs is defined in Eq. (3).

pcol−obs =
nobs
ns

(12)

4. RISK SEVERITY RESULTS: CASE STUDIES

The risk of obstacle collision is computed for an experimental
UAV flight conducted at the NASA Langley Research Center.
Figure 5 (b) shows the flight plan executed with a DJI S1000
Octocopter in autonomous mode. The vehicle, as depicted
in figure 5 (a), was equipped with Pixhawk autopilot hard-
ware (http://pixhawk.org/ ) and commanded with Ardupilot
software (http://ardupilot.org/ ) to fly through pre-defined 9
waypoints in 6 minutes.

Figure 5b shows the vehicle location ”unrolled in time”, cal-
culated by the autopilot using GPS locations and its inertial
measurement unit. The geospatial coordinates (latitude, lon-
gitude, and altitude) have been converted into a local, Earth-
fixed reference frame with origin at the take-off location, x-
axis pointing East, y-axis pointing North, and z-axis pointing
upwards, forming a East-North-Up (ENU) reference frame.
The z-axis represents altitude of the flight relative to its start-
ing location which was from the top of a building. The UAV
landed on the ground at certain times during the flight which
are hence represented by the negative z-values.

For demonstration of risk of obstacle collision, the above
flight data is used in a playback mode with simulated obsta-
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Figure 5. Example of DJIS1000 octocopter (5a) test flight in
autonomous mode: the observed position is compared against
the flight plan in a East-North-Up reference frame (5b).

cles, denoted by red squares and simulated wind field param-
eters. A 2D representation of the flight data is shown in fig
6 by considering the x and y-axis data only. At first, based
on the waypoint locations and commanded ETAs, the flight
trajectory is generated using the B-spline algorithm (Corbetta
et al., 2019). The blue vectors along the entire trajectory po-
sitions denote the vehicle airspeed under no-wind conditions.

4.1. Case 1: Effect of wind field

The magnitude and direction of the simulated wind-field are
varied and the corresponding risk of obstacle collision is com-
puted for the above UAV flight under different scenarios. At
every position in the trajectory, the potential deviated posi-
tions are computed based on Eqs. (9)-(11) and the proba-
bility of collision with obstacles is generated by Eq. (12),
depending on location of the obstacle with respect to the de-
viations. Figure 8 shows the 3 plots denoting risk of obsta-
cle collision at different values of the wind magnitude |Vw|

Figure 6. UAV flight trajectory in 2D representation simu-
lated obstacles.

and direction θw. In 2D representation, θw is defined as the
angle between the resultant wind velocity vector and its x-
component. For better understanding, directions of the UAV
and wind is shown in Figure 7.

Figure 7. UAV flight trajectory in 2D representation simu-
lated obstacles.

The normalized risk severity is plotted to compare the risks
for 3 UAV flights of the same vehicle size, obstacle infor-
mation and maneuverability conditions but subjected to dif-
ferent wind field. Depending on the intensity and direction
of the wind acting at each point on the trajectory and the
surrounding obstacle location, the deviated positions may or
may not lead to a collision and hence the risk varies ac-
cordingly. For case 1, the magnitude of the simulated wind
velocity is fixed at |Vw| = N (10, 2)ms−1 and direction
θw = N (40, 5)°. As a result, the probability of collision
with the obstacle 1 is higher resulting in higher risk sever-
ity (maximum value of 0.45) for the part of the trajectory
close to it. When wind field direction is changed as in the
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3rd case where θw = N (−90, 5)°, the risk severity become
high for the other part of the trajectory to the maximum of 0.8.
Magnitude of the wind velocity also affects the risk severity
as can be observed from the risk plot in the 2nd case with
|Vw| = N (8, 2)ms−1 and direction θw = N (−120, 5)°.
The maximum value of the risk severity is less than 0.1 is
this case.
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Figure 8. Effect of wind on Risk of obstacle collision.
Wind 1: |Vw| = N (10, 2)m/s, θw = N (40, 5)°; Wind
2: |Vw| = N (8, 2)m/s, θw = N (−120, 5)°; Wind 3:
|Vw| = N (14, 2)m/s, θw = N (−90, 5)°.

4.2. Case 2: Effect of vehicle size

Similar to wind direction, severity of risk to the obstacles is
dependent on the size of the vehicle exposed to the obstacle.
As denoted in Eq. (3), area of exposure during collision is
higher for a larger vehicle and vice-versa, thereby associated
with higher risk. UAVs are typically classified according to
size that includes micro UAV, small UAV, medium UAV, and
large UAV (Cano, Horton, Liljegren, & Bulanon, 2017). The
micro UAVs are extremely small in size and applies to sizes
of about an insect to 30-50 cm long. The small UAV (sUAV)
are UAVs with dimension greater than 50 cm and less than
2 m. The medium UAVs have dimension ranging from 5 m
to 10 m and can carry payloads of up to 200 kg, while large
UAVs include the ones mainly used for military operations or
for future urban air mobility applications.

Figure 9 represents 2 plots denoting the risk severity for two
of the most popular sUAVs in the market: 1) 3DR Iris and
2) DJI Phantom 2 flying over the same trajectory as de-
fined in figure 6 (Cano et al., 2017). Both vehicles have
been subjected to the same simulated wind field of magnitude
|Vw| = N (14, 2)m/s and direction θw = N (−90, 5)°. The
size of the vehicle, defined in terms of motor-to-motor dimen-
sions, is found to be 550mm for the Iris and 350mm for the
Phantom UAV. As discussed, the normalized risk computed
for the two cases based on equation (3) shows that higher risk

is associated for the larger vehicle when exposed to the same
wind in comparison to the smaller vehicle.
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Figure 9. Effect of vehicle size on risk of obstacle collision
(same wind conditions).

It should be noted that the current risk formulation lacks
the penetration model which correlates the vehicle size and
weight to the kinetic energy that will be transmitted to the
buildings dependent on the material of the obstacle wall and
roof properties. For example, a UAV hitting a glass building
has higher associated risk to the building itself than the vehi-
cle colliding with an asbestos roof. Such penetration models
will be included in the future extensions of this study in or-
der to refine the severity computation of the associated risk.
Moreover, the risk comparison study assumes that the control
time for both the vehicles is same, i.e., they take equal time to
direct themselves back to the commanded trajectory after be-
ing deviated due to wind gusts. Such a generalization may not
be valid for all categories of UAVs, since larger vehicles may
be more capable of counteracting the wind effect and hence
such inertia characteristics should be incorporated in the risk
equation.

4.3. Case 3: Effect of degraded maneuverability

A faulty motor or failure in the propeller unit may yield to de-
graded capability in an UAV that may interfere with its ma-
neuvering operations, therefore increasing the risk of colli-
sion both on ground as well as with obstacles. Diagnostics
of a faulty condition during a UAV flight is beyond the scope
of this study. However once a compromised component is
identified, the risk of obstacle collision can be computed by
increasing the nominal control time tcontrol. This assumption
is based on the fact that a UAV with a faulty motor may gener-
ate reduced rotations-per-minute (RPM) that would result in
reduced speed than a healthy vehicle. Under such condition,
when the compromised vehicle is deviated due to an external
disturbance such as wind, the controller would take higher
time to recover and get back to the flight plan.

Figure 10 depicts two risk plots for a UAV under healthy and
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Figure 10. Effect of degraded maneuverability on risk of ob-
stacle collision.

faulty condition with respective control time set at 1 and 1.5
seconds. As observed, the UAV with a faulty maneuverabil-
ity condition is expected to be associated with higher risk of
obstacle collision compared to its healthy counterpart. The
wind field parameters are kept unchanged for both the cases
with magnitude being |Vw| = N (8, 2)m/s and direction be-
ing θw = N (40, 5)°.

Figure 11 demonstrates the benefit of risk assessment to se-
lect between two planned trajectories in the case of degraded
capability. In Figure 11a, the two risk plots are associated
with two trajectories that a healthy UAV can fly through fol-
lowing the same set of waypoints: (1) taking only right turns
from start to end (clockwise direction) (2) taking only left
turns from start to end (anticlockwise direction). When ex-
posed to wind of magnitude |Vw| = N (8, 2)m/s and direc-
tion θw = N (90, 5)°, the risk associated with the trajectory
(1) was found to be higher than (2) in the case of the healthy
UAV, as observed in figure. Hence, the anticlockwise trajec-
tory would be safer for the UAV under this event.

On the other hand, if one of the left motors is identified to
be faulty while the UAV is in flight, the ability to complete
left turns by the UAV will be compromised. Under this sce-
nario if the UAV is subjected to the same wind field, the time
of recovery tcontrol will be higher than nominal operations
which will eventually result in higher risk of obstacle colli-
sion. Figure 11b denotes the risks associated with the same
two trajectories for a UAV with degraded left maneuverabil-
ity. In this case, the risk is higher for trajectory (2) and hence
the clockwise trajectory would be safer for the UAV, unlike
the previous case.

4.4. Case 4: Effect of obstacle measurement noise

Another important factor that may affect the risk severity is
the noise associated with obstacle measurements. As men-
tioned in Section 2, the position boundaries of the obstacles
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Figure 11. Risk of obstacle collision for clockwise and anti-
clockwise trajectories under same wind |Vw| = N (8, 2)m/s
and direction θw = N (90, 5)° (a) Healthy UAV (b) UAV with
degraded left maneuverability.

such as buildings and trees are obtained from navigation sen-
sors including IMU, Lidar or cameras which are typically
subjected to measurement noise. As a result, there is an in-
herent uncertainty associated with the point of collision rep-
resenting a true obstacle. The risk of collision is therefore de-
pendent on the measurement noise variance σobs, as demon-
strated in Figure 12. The two plots correspond to the risk
severity for the same UAV flight exposed to the same wind
conditions with magnitude |Vw| = N (6, 2)m/s and direc-
tion θw = N (90, 5)°, but with different measurement noise
variances of σobs = 2 and σobs = 10. For each case, the cor-
responding probability of the boundaries representing a true
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obstacle pobst is computed according to equation (4) followed
by the risk severity obtained from (3).
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Figure 12. Effect of obstacle measurement noise variance on
risk of obstacle collision (same wind conditions).

As denoted in Figure 12, it is observed that when the measure-
ment noise is low, the probability of the obstacle boundary
representing a true obstacle is high. Hence, the risk severity
for a potential collision on hitting the obstacle is high. On
the other hand, when σobs is high, the probability of the ob-
stacle boundary representing a true obstacle is low. Hence
the potential collision point caused by the deviated trajectory
may not be a true obstacle which reduces the corresponding
risk severity. However, since the measurement noise is high,
a larger section of the trajectory has non-zero risk severity
compared to the previous case of low σobs.

5. CONCLUSION

In this paper, the risk of collision with an obstacle has been
defined for an autonomous UAV. The risk likelihood is com-
puted using bayesian network that generates the probability
of trajectory deviation based on UAV health parameters such
as GPS Count, GPS Status, Remaining Battery, Battery Volt-
age, Telemetry Health, and Wind Speed. Further, the risk
severity is formulated as a function of multiple parameters in-
cluding the probability of collision with obstacles, the area of
exposure and obstacle measurement noise. The effect of indi-
vidual parameters on the overall risk severity is demonstrated
on a real UAV flight subjected to a simulated environment.
The resultant risk plots integrates the effects of off-nominal
conditions in a comprehensive fashion and hence enable de-
cision making under such conditions. In the case studies re-
ported in the paper, a stationary wind field has been assumed.
However, the approach remains valid for local wind effects
such as wind tunnel effects around obstacles in which case
the wind velocity magnitude and direction will be different at
different positions in the trajectory.

In this study, the probability of obstacle collision is dependent
on the control time which is considered as a health indica-

tor. In order to have low computation time, we have assumed
empirical values of this parameter so far. Next, we need to
investigate the change in vehicle dynamics for degraded con-
trollability (e.g.: faulty motor). Besides, a point-mass model
is currently assumed for the UAV which describes the kine-
matics of the vehicle. However, in order to generate more pre-
cise values of trajectory deviation caused by wind, wind ef-
fect needs to be incorporated into the vehicle dynamic model
as well. Effect of uncertainty in vehicle navigation measure-
ments will be incorporated further in order to compute the
risk of obstacle collision in real time. Finally, the risk formu-
lation will be used to examine safe distance requirements for
a UAV flight flying through urban canyons and variable wind
conditions.
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