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ABSTRACT

The digital twin paradigm aims to fuse information obtained
from sensor data, physics models, and operational data for
a mechanical component in use to make well-informed de-
cisions regarding health management and operations of the
component. In this work, we discuss a methodology for
digital-twin-based operation planning in mechanical systems
to enable: a) cost-effective maintenance scheduling, and b)
resilient operations of the system. As properties of mechan-
ical systems, as well as their operational parameters, loads
and environment are stochastic in nature, our methodology
includes probabilistic damage diagnosis, probabilistic dam-
age prognosis, and system optimization under uncertainty. As
an illustrative example, we consider the problem of fatigue
crack growth in a metal component. We discuss a proba-
bilistic, ultrasonic-guided-wave-based crack diagnosis frame-
work that can handle both aleatory and epistemic uncertain-
ties in the diagnosis process. We build a high-fidelity, fi-
nite element model to simulate the piezoelectric effect and
ultrasonic guided wave propagation. We use test data ob-
tained by conducting diagnostic experiments on the physi-
cal twin to calibrate the error in the diagnosis model. We
perform Bayesian diagnosis of crack growth using the cor-
rected diagnosis model, considering data corrupted by mea-
surement noise, and fuse the information from multiple sen-
sors. We build a finite-element-based high-fidelity model for
crack growth under uniaxial cyclic loading, and calibrate a
phenomenological (low-fidelity) fatigue crack growth model
using the high-fidelity model output as well as data from fa-
tigue loading experiments performed on the physical twin.

Pranav Karve et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

We use the resulting multi-fidelity model in a probabilistic
crack growth prognosis framework; thus achieving both ac-
curacy and computational efficiency. Lastly, we utilize the
damage diagnosis framework along with the damage progno-
sis model to optimize system operations under diagnostic and
prognostic uncertainty. We perform simulation experiments
that show how the digital twin of the component of interest
can be used for intelligent health management and operation
planning for mechanical systems.

1. INTRODUCTION

The need for aerospace vehicles to operate for long peri-
ods of time without the opportunity for maintenance or re-
pair makes strategies for extending the maintenance-free op-
eration window important. These strategies include recon-
figuration of the system or redesigning system operations
to minimize the stress experienced by critical system com-
ponents. The system reconfiguration strategy depends both
on the health state and its diagnosis; and the prediction of
how the damage will evolve given the task to be performed
(damage prognosis). The digital twin paradigm (Glaessgen
& Stargel, 2012; El Saddik, 2018; Lee, Bagheri, & Kao,
2015; Tao, Sui, et al., 2018; Söderberg, Wärmefjord, Carl-
son, & Lindkvist, 2017; Yang, Shen, & Wang, 2018; Tao,
Cheng, et al., 2018; Bruynseels, Santoni de Sio, & van den
Hoven, 2018; Tao, Zhang, Liu, & Nee, 2019), which inte-
grates the diagnostic and prognostic information with an opti-
mization framework, is well-suited for redesigning aerospace
system operations. In this article, we discuss the digital-
twin-based methodology and illustrate its utility by perform-
ing a simulation experiment. In the simulation experiment,
both (physical and digital) twins are represented by compu-
tational models. As an example, we consider fatigue crack
growth from a hole (a surrogate for initial damage) in a thin
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Aluminum plate under uni-axial, cyclic loading. The Alu-
minum plate is a surrogate for an aerostructural component,
whereas the cyclic loading pattern applied to the plate rep-
resents the loading applied to the component during differ-
ent vehicle maneuvers. Thus, the theory-critical problem
considered in this work is a simplified version of design-
ing damage-adaptive, resilience-enhancing aerospace vehi-
cle maneuvers. We discuss probabilistic diagnosis using ul-
trasonic guided-wave pitch catch, probabilistic fatigue crack
prognosis using linear-elastic-fracture-mechanics-based, sub-
critical fatigue crack growth models, and strategies for load-
profile optimization under uncertainty to restrict the fatigue
crack growth below a threshold value while ensuring that the
work done by the system is greater than a predefined thresh-
old value.

Design of damage-adaptive system operations necessitate
quantification of the current damage state. Both the sever-
ity of damage and the (aleatory and epistemic) uncertainty in
the diagnosis need to be quantified. Aleatory uncertainty is
the irreducible uncertainty associated with natural variability,
whereas epistemic uncertainty arises due to lack of knowl-
edge, and is reducible. We discuss damage diagnosis using
the ultrasonic guided-wave pitch-catch method (Alleyne &
Cawley, 1992; Chang & Mal, 1999; Michaels & Michaels,
2005; J. Ihn & Chang, 2008; J.-B. Ihn & Chang, 2008;
Michaels, 2008; Sbarufatti, Manson, & Worden, 2014; Yang
et al., 2016; Janapati, Kopsaftopoulos, Li, Lee, & Chang,
2016; He, Ran, Liu, Yang, & Guan, 2017; Wang, He, Guan,
Yang, & Zhang, 2018). The ultrasonic pitch-catch method
utilizes a network of monolithic PZT (Pb(Zr−Ti)O3) trans-
ducers bonded to the component of interest as actuators and
sensors for the Lamb waves propagating in the plate. We use a
physics-based damage index calculated using features of the
time-varying electric potential measured by the sensors for
damage diagnosis. We discuss a Bayesian framework to per-
form probabilistic diagnosis that enables treatment of aleatory
and epistemic uncertainties involved in the process. We per-
form low-fidelity modeling of the governing physics, sensi-
tivity analysis and dimension reduction, high-fidelity mod-
eling of the governing physics to generate training data and
build computationally inexpensive surrogate models to per-
form Bayesian estimation and information fusion for crack
length prediction.

Given the damage state in a component of interest (along with
an estimate of the diagnosis uncertainty), damage-adaptive
system operations can be designed if the propagation of dam-
age under various candidate system operations can be esti-
mated. This can be achieved by means of probabilistic dam-
age prognosis in aerospace structural components. Here, a
hole at the center of the aluminum plate represents the ini-
tial damage, and the crack growth due to applied cyclic loads
represent damage evolution. Thus, a fatigue crack growth
model is needed to perform damage prognosis. We employ

an analytical model based on the assumptions of linear elastic
fracture mechanics (LEFM) with small-scale plasticity, where
the sub-critical fatigue crack growth due to the applied cyclic
loading is estimated by calculating the crack growth rate as a
function of stress-intensity factors and other model parame-
ters. We consider the uncertainty in the diagnosis of the ini-
tial crack size, as well as the aleatory uncertainty in the crack
growth estimation. Once again, we use computationally ex-
pensive surrogate models of the underlying physics to ensure
that sampling-based probabilistic analyses are performed in a
computationally efficient manner.

If the damage severity (and the associated uncertainty) is
known, and a well-calibrated model for probabilistic damage
prognosis is available, then system reconfiguration to ensure
extended maintenance-free operation can be performed. In
this work, as an example, we consider the problem of (cyclic)
load-profile optimization. We assume that a given aerospace
vehicle maneuver is associated with a characteristic (cyclic)
load level range, and we seek the optimal magnitude as well
as the optimal duration of the load (intensity and duration of
the maneuver) to ensure: a) maintenance-free operation pe-
riod is extended beyond the specified duration (that is, the
damage growth is below a specified threshold), b) minimum
required work is performed. We assume that the component
(plate) has to complete a fixed number of maintenance-free
tasks (missions), and each task has a few sub-tasks (maneu-
vers). Each sub-task is characterized by the limits (minimum
and maximum) on the tensile load, and duration for which
the load acts. The load levels can be seen as metric of the in-
tensity of a given maneuver, whereas the duration defines the
time for which a specific maneuver is sustainable to ensure
maintenance-free operations. The goal of the load-profile op-
timization is to minimize the probability of exceeding the
critical crack size at the end of the last mission while satis-
fying other constraints. We discuss a hybrid scheme that uses
minimization of expected damage growth for the first few
missions, and reliability-based optimization for the remain-
ing missions. We use a surrogate-based optimization frame-
work (Gutmann, 2001) to perform the optimization.

2. METHODOLOGY

2.1. Probabilistic damage diagnosis

In this section, the methodology used for performing damage
diagnosis using Bayesian information fusion for Lamb wave
pitch-catch is discussed. The aluminum plate and sensor net-
work considered in this work are depicted in figure 1.

2.1.1. Global sensitivity analysis and dimension reduc-
tion

A low-fidelity model (Lanza di Scalea & Salamone, 2008) is
employed to simulate the Lamb wave actuation-propagation-
sensing under plane stress conditions to perform global sensi-

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 1. Aluminum (AL) plate and actuator-sensor network

tivity analysis. The physics model uses a) converse piezoelec-
tric effect to model actuation strain given the excitation volt-
age, b) the shear-lag theory of Crawley and de Luis (Crawley
& Luis, 1987) to obtain actuated shear stress in the plate, c)
the mode expansion formulation by Giurgiutiu (Giurgiutiu,
2005) coupled with Fourier transform of the shear stress in
the plate to compute the Lamb strain, d) a modified shear-
lag model for calculating the sensor response (strain) to the
Lamb strain in the plate, and e) the integrated sensor strain
multiplied by a sensitivity term to arrive at the sensor output
voltage. Using this model and the values of the model param-
eters, the response (root mean square of the sensed signal)
corresponding to the S0 mode at a given frequency can be
obtained. For a given root mean squared (RMS) value of the
input voltage, analyze the variance of the RMS value of the
output voltage is analyzed. All parameters do not contribute
equally to the uncertainty in the output voltage, and Sobol’
sensitivity indices can be employed to estimate the contribu-
tion of the parameters to the output. For a model of the form
y = f(x),where x = [x1 x2 ... xn] is the vector of stochastic
model inputs, the first-order (individual effect) index is given
by:

Si =
Vxi(Ex−i(y|xi))

V (y)
, (1)

where x−i denotes all the model inputs other than xi. The
total effect index is given by

ST
i = 1−

Vx−i(Exi(y|x−i))
V (y)

, (2)

where V is the variance of the quantity in the parenthesis.
The first-order index quantifies the individual contribution to

the overall uncertainty in the output variable due to the un-
certainty in an input variable without considering its inter-
actions with other input variables, whereas the total effects
index considers interactions with other input variables while
estimating the same. Here, the relative values of these indices
are used to identify parameters that have significant contri-
bution to the uncertainty of the output quantity. We retain
the important parameters as random variables and treat other
parameters as deterministic variables at their mean values in
subsequent analysis.

2.1.2. Surrogate modeling

The governing physics for the problem of interest involves
the piezoelectric effect (Gauss’ law for electricity) and elastic
wave propagation in isotropic, thin plates (balance of momen-
tum). A sampling-based algorithm is to be used to perform
Bayesian diagnosis and information fusion. Thus, an effi-
cient computational model that can provide the quantity of
interest for a given sample of the parameters is needed. This
is achieved by training a surrogate model (or a response sur-
face) using the physics model. A finite element model for the
governing physics is built using a commercial finite element
program (Abaqus (Abaqus 6.14 Documentation, 2014)).

The governing physics is simulated using this model, the
given set of input parameters, and given crack lengths to ob-
tain output voltage signals necessary to perform the Bayesian
estimation and information fusion. The damage sensitive fea-
ture (as a scalar quantity, y) of the output voltage signals is
obtained and the training data set that contains the damage
sensitive features corresponding to the chosen parameter val-
ues is obtained. A GP surrogate model is built using the train-
ing data set. Given the training data (inputs X, correspond-
ing outputs y) and calibrated (trained) hyper-parameters of
the GP (Θc), the output corresponding to a new input x∗ is a
Gaussian random variable:

y∗ ∼ N(µy∗(X,y,x∗,Θc), σ
2
y∗

(X,y,x∗,Θc)). (3)

2.1.3. Bayesian information fusion

The goal is to estimate the crack length using the damage-
sensitive feature of the sensed (voltage) signal (ydata) and
Bayesian estimation. To this end, the uncertainty in the
knowledge of the crack length is expressed by means of a
probability distribution function. A prior distribution (pprior)
of the crack length is assumed based on intuition, experience,
etc.; and the knowledge is updated using the data by comput-
ing the likelihood function (plikelihood) as:

ppost(a|ydata) ∝ plikelihood(ydata|a) ∗ pprior(a). (4)

The Gaussian process (GP) surrogate model and a model of
the measurement noise are used to obtain the likelihood func-
tion. The posterior distribution of the crack length is com-
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puted using a Markov chain Monte Carlo method. Each
actuator-sensor path provides a different value of the dam-
age metric, and hence, some additional information about the
state of the damage (crack length) (figure 1). If the estima-
tion is performed for a path (say) A2-S2, then the updated
posterior for the crack length can be used as a prior for the
Bayesian estimation for the next path (say A2-S3). The result
at the end of the second Bayesian update is the result of the
fusion of information contained in the data obtained from the
two actuator-sensor paths. In our simulation experiments, the
fusion of information obtained from Lamb-wave pitch-catch
is performed along seven different actuator-sensor paths, viz.
A2S2, A2S3, A2S1, A3S2, A1S2, A3S1, and A1S3 (see fig-
ure 1).

2.2. Probabilistic damage prognosis

If the current damage state and the associated uncertainty
are known, then a damage prognosis methodology is needed
to estimate potential damage growth (and associated uncer-
tainty) for different system operations. We are concerned
with fatigue crack growth in an aluminum plate (dimensions
380 mm x 150 mm x 0.81 mm) with an initial flaw under
uni-axial, cyclic loading, as shown in figure 1. The plate is
loaded on a 75-mm-wide region at the center of the shorter
edge, and subjected to cyclic loads. For probabilistic crack
prognosis, mode I crack propagation is considered under the
uni-axial, tension-tension loading. Many empirical formulas
for fatigue crack growth analysis are proposed in the con-
text of LEFM with small-scale plasticity, for example, Paris’
law (Paris & Erdogan, 1963), modified Paris’ law (Donahue,
Clark, Atanmo, Kumble, & McEvily, 1972), Forman’s equa-
tion (Forman, Kearney, & Engle, 1967), the NASGRO model,
etc. These models predict crack growth rate (da/dN ) as a
function of the stress intensity factor range (∆K) and other
model parameters. In this work, the Forman’s equation,
which takes into the consideration the effects of the stress
ratio (R) and the fracture toughness (Kc) on the crack growth
rate is used. Thus, the crack growth rate is modeled as:

da

dN
=

C · (∆K)
m

(1−R) ·Kc −∆K
(5)

where m = 3.17, C is the parameter that can be cali-
brated using data from (laboratory) experiments, and Kc =
67MPa

√
m (“Fracture processes of aerospace materials”,

2012). Given a cyclic load profile, a cycle-by-cycle estima-
tion of the fatigue crack growth is performed. Thus, an esti-
mate of stress intensity factors (SIFs) at the crack tip for the
minimum and maximum load during a cycle for various crack
lengths is needed. SIF can be expressed as an explicit func-
tion of crack size and stress level for specimens with simple
geometry and loading conditions. However, analytical ex-
pressions for SIF for the specimen and loading of our inter-
est (partially-loaded-edges, finite-width plate with a hole in

the center and crack on both sides of the hole) are not avail-
able. Hence, finite element model analysis is necessary to
obtain the SIFs of interest. To this end, a two-dimensional fi-
nite element model is created in Abaqus (Abaqus 6.14 Docu-
mentation, 2014) (assuming plane stress conditions) to reflect
the operational conditions: one edge (partially) fixed and the
other edge loaded only at the center 75-mm-wide region, and
compute stress intensity factors for different crack lengths
and loads using the contour integration technique (figure 2).

Figure 2. Aluminum plate (finite element) model used to de-
termine SIFs

Obtaining the SIF using a finite element model at each cycle
in the cycle-by-cycle analysis is a computationally expensive
task for sampling-based, probabilistic fatigue crack growth
prognosis. To expedite the process of SIF computation, a GP
surrogate model that accepts the load and the current crack
length as inputs, and provides the SIF as the output is used.
Thus, the training points for the GP model include a two-
dimensional input (load, crack length) and one-dimensional
output (SIF). A series of finite element model runs are per-
formed with different combinations of crack sizes and loads
to obtain the training and testing data set.

The GP surrogate model, and crack growth model (For-
man model) are used for probabilistic, cycle-by-cycle crack
growth prediction. Diagnosis uncertainty and the variability
in Forman model parameter (C) are the uncertainty sources
considered in this work. At each cycle, the minimum and
maximum loads are known and the current crack size distribu-
tion is inherited from the crack growth analysis of the previ-
ous cycle (or from damage diagnosis). The loads and samples
from the current crack size distribution are used as the input
of the GP model to predict the range of SIFs (∆K). These
∆K values are then used in the Forman’s equation to predict
the crack growth rate (da/dN ) distribution for the current cy-
cle. The crack growth rate distribution is used to obtain the
crack size distribution at the end of the current cycle. In this
manner, probabilistic damage prognosis is performed given
the candidate operational parameters (load profile).
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Intelligent operation planning needs to be performed to en-
sure that the component completes the required tasks. In or-
der to evaluate system performance, a metric is needed to
measure the performance of the component. Here the me-
chanical work done during the loading phase of the cyclic
loading is chosen as the required performance metric. The
displacements on the left edge of the finite element model is
recorded, and approximate the nodal force from the thickness
t, the applied traction T and the element size ∆ as:

F = T · t · ∆

2
. (6)

Given the displacement and the loading, the work done by
an applied load (F ) can be computed. The work done is a
function of the applied load and crack size. Another Gaussian
process surrogate model is built that outputs the work done
in a cycle, given the loading and the crack length during a
particular cycle. This GP model to evaluate a constraint in
the load-profile optimization problem.

2.3. Load-profile optimization under uncertainty

A methodology to design intelligent, condition-based opera-
tions of a mechanical system that enhance system resilience
is needed. To this end, we discuss load-profile optimization
aimed at delaying damage growth while ensuring the required
amount of work is performed by the system. The key as-
sumptions of the load-profile optimization problem are listed
below:

1. Maintenance-free execution of four tasks (or missions) is
to be performed by the component.

2. Each task is divided into three sub-tasks. A given sub-
task (maneuver) is characterized by the corresponding
minimum and maximum load levels. We also set the
minimum and maximum duration for each maneuver for
each mission. The loads for all maneuvers lead to con-
stant stress ratio, R = 0.5.

For the optimization problem, the (constant) loading ampli-
tude and the number of loading cycles (for each maneuver)
are the decision variables. They represent the intensity and
duration for which the maneuver is performed. Three differ-
ent optimization strategies are possible a) minimization of the
expected final crack size after each mission, b) minimization
of the probability of exceeding a (predefined) critical crack
size (acrit) for each mission (reliability-based design opti-
mization), and c) a hybrid strategy where the first two mis-
sions aim to minimize the expected value of final damage,
and the next two missions use reliability-based design opti-
mization. The probability of failure is very low in the first
few missions, and the sampling-based optimization process
may yield inaccurate results for this case. A hybrid strategy
is thus adopted in this work. The optimization problem for

this case can be stated as:

Missions 1,2
minimize

x∈Rnx ,θ∈Rnθ
E[af (x,θ)],

subject to E[g(x)] ≥Wmin,

xlb ≤ x ≤ xub,

(7)

Missions 3,4
minimize

x∈Rnx ,θ∈Rnθ
P [af (x,θ) ≥ acrit],

subject to E[g(x)] ≥Wmin,

xlb ≤ x ≤ xub,

(8)

where x is the vector of decision variables, θ is the vector of
damage prognosis model parameters, g(x) is the performance
function that denotes the work done described in section 2.2,
E[af (x,θ)] is the expected value of the crack size after each
mission, and E[g(x)] is the expected value of the non-linear
performance function (it evaluates the total amount of work
done during each mission), Wmin represents the amount of
that needs to be done for each mission, xlb, xub represents
the lower and upper bounds for the deterministic design vari-
ables, respectively, and Pf = P [af (x,θ) ≥ acrit] is the
probability of failure.

3. RESULTS AND DISCUSSION

In this section, we discuss results of parameter space reduc-
tion and surrogate model training required for probabilistic
diagnosis and prognosis, and illustrate the methodology by
performing load profile optimization for simulation experi-
ments.

3.1. Global sensitivity analysis

Based on the material properties given in table 1 the global
sensitivity analysis is performed. The input variables are as-
sumed to be uncorrelated Gaussian random variables. Sobol’
indices are computed using the method proposed by Saltelli
et al. (Saltelli et al., 2010), using two sets of 107 random sam-
ples of the input variables. The results of the sensitivity analy-
sis are depicted in table 2. It can be seen that the piezoelectric
coefficient of actuator and sensor have the largest contribution
to the variability of the output. Hence, we build the compu-
tational physics model for a sample of these parameters to
create the training data for the GP surrogate model, and all
other parameters are assumed to be deterministic variables at
their mean values.

3.2. Surrogate modeling for diagnosis

We build a three-dimensional finite element model for a
0.81 mm thick aluminum plate (figure 1) with PZT-5J trans-
ducers as actuators and sensors. We use three-dimensional
continuum finite elements (C3D20) to model the plate and
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Table 1. Mean (µ) and standard deviation (σ) values for input variables for sensitivity analysis

Parameter Gad (Pa) tad (m) Ea (Pa) d31a (m/V)
µ 2.8× 109 0.01× 10−3 74× 109 500× 10−12

σ 1.8× 108 0.01× 10−4 3.7× 109 5× 10−11

Parameter lPZT (m) tPZT (m) Ep (Pa) ρp (kg/m3)
µ 7× 10−3 0.5× 10−3 71.7× 109 2810
σ 7× 10−4 0.5× 10−4 3.58× 109 140.5

Parameter Es (Pa) νs d31s (m/V) e33s (F/m3)
µ 7× 10−3 0.5× 10−3 500× 10−12 1.86× 10−8
σ 7× 10−4 0.5× 10−4 5× 10−11 1.86× 10−9

Table 2. Results of variance-based sensitivity analysis
(Sobol’ index)

Parameter Total effect indices

Gad 1.5 ×10−5

tad 1.7 ×10−5

Ea 0.009
d31a 0.096
lPZT 0.006
tPZT 0.005
Ep 0.001
ρp 0.002
Es 0.055
νs 0.008
d31s 0.82
e33s 0.099

the adhesive used to bond the piezoelectric transducers to
the plate. We utilize three-dimensional piezoelectric finite
elements (C3D20E) to model the transducers. We use a
Hanning-modulated, three-cycle long sine pulse (frequency
200 kHz) to excite the actuator. We run the model for twenty
five samples of the important input variables (pertinent di-
electric coefficients), and for six different values of the length
of the crack growing out of the hole in the center. Thus,
we perform one hundred and fifty runs of the finite element
model to generate the training data for the GP model. We
record the output voltage time series for each of the train-
ing points, for all crack lengths. We then compute a short-
term-Fourier-transform-based energy metric (J. Ihn & Chang,
2008) for S0 wavelet at central frequency (fc) of 200 kHz,
250 kHz and 300 kHz. We treat the S0 wave energy (S0e)
as the scalar output, based on which, the diagnosis is to be
performed. Thus we build the GP surrogate model:

y = fGP(x; fc),where y = S0e, x = [d15a d15s a], (9)

and the subscript (a or s) denotes actuator or sensor proper-
ties, respectively. We repeat the procedure for each actuator-
sensor path. The goodness of fit for all crack lengths for paths
A2-S2 is shown in figure 3. It can be seen that the surrogate
is sufficiently accurate.

Figure 3. GP surrogate model - testing data for A2-S2

3.3. Surrogate modeling for prognosis and work perfor-
mance computation

We perform 144 different finite element model runs, which
cover the combinations of load of 1000-8000 lbs with a 1000
lbs increment and the crack sizes of 5-90 mm with a 5 mm
increment. The combinations cover the whole range of the
operational conditions. We randomly select 130 points from
the data set to train the GP model, and use the remaining 14
points to test the GP model. The mean absolute errors for 14
testing points is less than 2%. Thus, the number of training
points appears to provide high, converged accuracy for the
surrogate model. The trained GP model is used to predict the
SIF for different crack sizes and loading cases. The force-
displacement data recorded on the loaded boundary is used
to build another GP surrogate that estimates the performance
constraint.

3.4. Load profile optimization: simulation experiment

In the simulation experiment, the probabilistic diagnosis is
performed using ultrasonic guided-wave pitch-catch and syn-
thetic data to obtain an estimate of the crack size at the be-
ginning of a mission. The value of crack size obtained from
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Table 3. Input variables for generating training data for surrogate model

d15a = {536× 10−12, 603× 10−12, 670× 10−12, 737× 10−12, 804× 10−12} m/V
d15s = {536× 10−12, 603× 10−12, 670× 10−12, 737× 10−12, 804× 10−12} m/V
a = {0, 5, 10, 15, 20, 25} mm

Lower bounds Upper bounds
Cases N1 N2 N3 N1 N2 N3

Mission 1 480 640 480 720 960 720
Mission 2 960 1280 960 1680 2240 1680
Mission 3 600 800 600 1050 1400 1050
Mission 4 360 480 360 630 840 630

Table 4. Lower and upper bound constraints on the number of cycles for each maneuver

Lower bounds Upper bounds
Cases Fmax,1 Fmax,2 Fmax,3 Fmax,1 Fmax,2 Fmax,3 Wmin

[lbs] [lbs] [lbs] [lbs] [lbs] [lbs] [J]
Mission 1 3000 4500 4000 4000 5500 5000 1.61501× 104

Mission 2 3000 4500 4000 4000 5500 5000 3.23002× 104

Mission 3 3000 4500 4000 4000 5500 5000 2.01476× 104

Mission 4 3000 4500 4000 4000 5500 5000 1.21026× 104

Table 5. Lower and upper bound constraints on the fatigue block load amplitude for each maneuver and the minimum work
done constraint for each mission

Missions Fmax,1 Fmax,2 Fmax,3 N1 N2 N3 Ntotal acrit E[af ] Pf atrue E[g(x)]
[lbs] [lbs] [lbs] [mm] [mm] [mm] [J]

Mission 1 3768.9 4500.0 4031.4 693 895 720 2308 5.55 5.54 1.62044× 104

Mission 2 3075.6 4500.0 4000.0 1675 2240 1167 5082 7.07 7.26 3.26366× 104

Mission 3 3011.5 4500.0 4088.2 1030 1108 1050 3188 10.00 8.58 0.002400 8.63 2.01533× 104

Mission 4 3159.9 4500.0 4000.0 630 788 462 1880 10.00 9.64 0.204425 9.64 1.21105× 104

Table 6. Optimal design variables for intelligent mission planning

probabilistic diagnosis, and the associated uncertainty are
passed on to the load profile optimizer to design the optimal
loading profile for the mission. The optimal loading is ap-
plied to a numerical model of the component to simulate the
crack growth. This process is repeated for all four missions.
In this manner, the simulation experiment is used to illustrate
the integration of probabilistic diagnosis, prognosis, and load
profile optimization. For the computational model represent-
ing the physical twin, the true value of C for the specimen
is assumed to be C∗ = 1.15 × 10−08 m/cycle. For the dig-
ital twin, uncertainty in the knowledge of the parameter C is
modeled by assuming C as a Gaussian random variable with
the mean value of 1.15 × 10−8 m/cycle, and a coefficient of
variation of 0.1154. The bounds for the design variables and
the minimum work done constraint (Wmin) for each mission
are given in Tables 4 and 5. A critical crack size acrit = 10.0
mm is used for the last two missions. We remark that in a
real-world application of the methodology, the critical dam-
age size can be decided using the relevant standard of practice
(e.g. Department of Defense Standard of Practice MIL-STD-
1531Dc1).

It is assumed that a crack size a0 = 5 mm represents the ini-
tial damage in the component. For the probabilistic diagnosis,
synthetic data generated from the computational model is fed
to the Bayesian estimator to obtain the crack size and diag-
nosis uncertainty. The diagnosis results are obtained using
Markov-chain Monte-Carlo method (Metropolis-Hastings al-
gorithm (Hastings, 1970)) . In the GP surrogate model (equa-
tion 9), the two dielectric coefficients (d15a, d15s) are as-
sumed to be fixed at their mean values and the likelihood of
a candidate crack length is computed. A Markov chain of
105 Monte Carlo samples is constructed and the initial 10000
samples are rejected (initial burn-in samples).

The results of load profile optimization are shown in Ta-
ble 6. It can be seen in Table 6 that the optimizer suc-
cessfully attained the minimum work performance constraint
(E[g(x)] > Wmin) for all missions. It can be seen from the
results that for some of the maneuvers, the optimizer chose
the lowest possible load value to complete the mission. This
can be explained as follows. The work requirement constraint
is approximately proportional to the square of the applied
loading, whereas the crack growth is approximately propor-
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tional to the m-th order of applied loading (m ≈ 3). Thus,
utilization of lower load for a large number of cycles may be
sufficient to complete a mission (provided the time constraint
allows for the required number of cycles).

4. CONCLUSIONS

We discussed a methodology for performing health manage-
ment and operations related decisions for a mechanical sys-
tem. This was achieved by designing operational parameters
(loading intensity) for a simple mechanical component such
that the damage growth in the component was minimized,
while the component performed desired work. We consid-
ered three key aspects of intelligent decision making for a me-
chanical system: probabilistic damage diagnosis, probabilis-
tic damage prognosis, and system optimization under uncer-
tainty. We built digital twin of the component of interest using
multi-physics, multi-fidelity models and considered aleatory
uncertainty, as well as diagnosis uncertainty in our analysis.
We explored a hybrid approach that combined crack growth
minimization with reliability-based design optimization. We
showed that the proposed methodology can be successfully
used, with the help of a digital twin for the system of interest,
to perform operational planning to achieve the desired system
performance goal.
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