
 1

Digital Fleet Management: A Scalable Cloud Framework Based on

Data-Driven Prediction Models

Sherin Thomas1, Abhishek Dubey2, Daniel Viassolo3, Magson Zanette4

1,2Schlumberger, Pune India Technology Center, Maharashtra, 411006, India

SThomas35@slb.com

ADubey4@slb.com

3Schlumberger, 1430 Enclave Parkway, Houston, TX 77077, USA

DViassolo@slb.com

4Schlumberger, 555 Industrial Blvd, Maildrop 4, Sugar Land, TX 77478, USA

MZanette@slb.com

ABSTRACT

A scalable Digital Fleet Management System can be

leveraged by organizations with high-volume high-value

assets. In such scenarios, predictive analytics for tool health

becomes central, as it enables decision-making in terms of

planning, maintenance, end-of-life replacement, tool

selection, etc. An end-to-end solution spans all the way from

gathering live tool data to visual representations of tool

health.

Long-term fleet management can be accomplished through a

consistent evaluation of the fleet performance profile.

Predictive analysis can anticipate maintenance needs and

resultant downtimes, and in turn it helps improve scheduling

of procurement and distribution of the fleet.

Overall, such a framework can be divided into two focus

areas: framework deployment; sustenance and algorithm

development. The former area focuses on all the topics

related to developing an end-to-end solution architecture,

scaling and deploying it on demand, and maintaining it going

forward. The later area focuses on defining risk index,

developing Machine Learning (ML) algorithms for different

tools, defining a single comparison metric and deciding on

when to trigger the automated re-training for each tool. This

paper focuses on raising and solving all key questions for

building such a framework.

1. INTRODUCTION

Fleet management systems are about managing a fleet of

thousands of downhole tools based on tool health condition

and other variables – a common use case in Oil & Gas

Services. Fleet Management continues to have its relevance

in an organization’s competitive business growth as it

facilitates cost and time savings (Alsyouf, 2012). The impact

of unplanned downtime in case of industries like Oil & Gas

(Moir, Niculita & Milligan, 2018) is significant, as it leads to

production outage and in turn revenue loss. The increased

availability of monitoring data can be exploited to build data-

driven applications that can increase the productivity by

efficient fleet maintenance. The maintenance and failure

histories of the tools combine to form a weighty source for

predicting the failure probabilities. Facilitating the flow of

large data through a structured and automated channel

enables fast and reliable identification of impending failures,

eliminating the human-errors, bias and assumptions. The

state-of-the-art technologies of Machine Learning, Cloud

Computing and Big Data are ramping up the possibilities of

efficient fleet maintenance.

In this paper, an end-to-end automated scalable cloud

framework is described in detail, which integrates failure

prediction models for each asset in the large fleet of tools.

Based on historical tool data, the models generate tool risk

indices (one index per asset) which correlate to the

probability of tool failure during near-future field jobs. These

risk indices can be used for optimal asset-to-job mapping.

They also help in de-risking field operations by identifying

tools for overhaul or retirement. The proposed method

integrates the tasks of fetching data from 200,000+ tools,

performing feature engineering, modeling via ML, and

visualizing into a cloud pipeline. Framework scalability

becomes a key requirement as fleet size increases or

decreases over time to match market demands. The

framework also allows for the easy addition of new ML

models to the platform by citizen data scientists, who are not

cloud experts. Finally, it is shown how this framework

Sherin Thomas et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

2

provides systematic steps for sustenance of such large cloud

platform.

Before we start getting into details of the framework, let us

try to raise all the questions which we must solve through this

framework.

1. What should be a generic architecture of such a

deployment and sustenance framework, that can

• Automatically scale up and down on demand

• Show all the activities and issues in real time

• Be configurable without code

2. How to enable easy and stable onboarding of any

new tool model by data scientists to the framework

3. How to store final output keeping in mind that

• The final output data can be huge

• Easy integration with visualization tool is a key

factor

• Requirement for inbuilt role level access

management

Questions related to the algorithm development side of the

framework are:

1. How to define and interpret the Tool Risk Index

2. For a given tool, how to compare various

algorithm’s prediction accuracies (with different

output scale) to select one

3. How to compare predictions and model training

across different tool families

4. How and when to trigger the auto model re-training

for any tool

Any large-scale fleet management system should provide a

clear answer to both the above group of questions at various

stage of project life cycle from development, to production/

commercialization and finally to sustenance. The framework

proposed in this paper tries to answer all these questions and

covers all the critical components an organization would need

to build such a large-scale framework.

2. RELATED WORK

Fleet Management has its past rich with several researches to

develop dynamically scalable, distributed and fully

automated systems that can enable timely information

gathering, knowledge sharing and maintenance scheduling.

Variants of maintenance strategies are subjected to different

studies in the past, including corrective, time-based,

condition based (Kothamasu, Huang & VerDuin, 2006) and

predictive maintenance. The predictive process is defined to

have steps including preprocessing, fault prognosis and post-

action prognosis (Lee, Lapira., Bagheri, & Kao, 2013). To

deliver these functionalities of predictive systems, cloud-

based frameworks were developed for different industries,

delivering PHM as a service (Lee, Yang, Lapira, Kao & Yen,

2013, Mounir, Guo, Panchal, Mohamed, AbouSayed &

Abou-Sayed, 2018). Apiletti, Barberis, Cerquitelli, Macii,

Macii, Poncino and Ventura (2018) proposed a similar

architecture in Industry 4.0, utilizing the distributed cloud

services. A framework based on Amazon Web Services

(AWS) was developed by (Mahmud, Iqbal & Doctor, 2016)

to facilitate big data analysis and data visualization in health-

shock prediction.

In the approach proposed in this paper, the big data analytics

capabilities (Mohammadpoor & Torabi, 2018) are leveraged

by integrating them with Google cloud services, which

provides a flexible, low-cost and secure framework for

predictive analysis and visualization. Data-driven

approaches employing pattern recognition and machine

learning (Schwabacher & Goebel, 2007) are integrated to the

cloud framework for predicting a risk factor for each of the

tools. The complex computational tasks on big data are

delivered using the cloud computing platform (Ji, Li, Qiu,

Awada, & Li, 2012), by choosing the optimal infrastructure

and services. This framework provides the advantage of

spinning up and down resources dynamically on demand,

depending on various factors like data volume, cost of

operation, complexity, time, etc. It also ensures the reliability

and security of the system, by using the minimal standard

cloud services. The proposed pipeline enables the use of

predefined variants of machine learning technologies in

cloud (Pop, 2016) along with custom made models. Almost

all the large scale PHM papers focus only on the cloud and

distributed computing, while the problem specific PHM/ ML

papers focuses on the problem formulation and solution. This

paper provides a novel framework which covers both the

aspects of building such a large complex system, irrespective

of the underlining technology, cloud/ computing vendor,

Machine Leaning algorithms. We also provide an equivalent

solution with respect to the suggested framework using

Google Cloud Platform, but a similar solution can be

developed with any of the major cloud providers today. We

not only provide a framework, but also define the individuals

and components that are needed in the overall framework

covering everyone from Subject Matter Expert (SME), Data

Scientists, Cloud Engineers to the IT support.

3. PROPOSED METHOD

To address and solve all the questions raised from framework

deployment and sustenance side, we present a high-level

architecture diagram for an end-to-end Digital Fleet

Management System. Let us first analyze how the platform

interacts with each of the main outside entities.

The Project Data Pond gets continuous data from the

organization’s Data Lake through a standard ingestion/

subscription method. The data ingestion/ subscription is

usually handled at the organization level and not at the

project/team level through a separate dedicated Data

Platform team.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

3

The Data Scientist having read-only access to the project

data pond pulls the data for the tool which he/she needs to

develop the machine learning model for. Once they have

explored and developed the Machine Learning model for one

tool, they package their code as separate training, validation

and testing module. This code is then pushed to the project

code repository.

The Platform Sustenance Engineer, schedule and monitors

the platform jobs, using the framework orchestration/

monitoring platform. Unless there are major component or

flow changes required, platform should be configurable just

by simple parameter updates.

The End User/ Product, depending on the permission level

should be able to consume the data through RESTful API.

This ensures the smooth integration across all time of data

consumers, like any visualization tools, web application,

mobile application, etc.

3.1. Platform Architecture

The proposed architecture in Figure 1 shows the components

required to build the platform. The organization can choose

to deploy it on their on-premises infrastructure, on cloud

platform, or can choose to go with a hybrid setting. For our

fleet management platform, we decided to deploy the above

architecture on Google Cloud Platform, one of the leading

cloud platform vendors. Figure 2 shows the equivalent

architecture diagram for our platform.

3.1.1. Tool Family Level Model Images with CI/ CD

This component is required for two main reasons. First, it lets

the Data Scientists to add their ML models to the framework

without much knowledge of cloud and actual architecture.

Second, this is required for submitting the individual model

training, validation and testing for all tools to run on demand

in parallel. Once the data scientists have developed the

model, all they need to do is package the different code

modules for training, testing and validation into a predefined

structure and commit to the central project code repository.

After the code is pushed and the approver approves the merge

to the main branch of the project Repo, the Cloud Build runs

the standard basic test cases. Once the test cases are passed

the Cloud Build builds the model Docker container image and

saves it to the Google Container Registry. The advantage of

running a model in a container is increased portability of the

model, instead of restricting our Data Science team from

selecting specific tools or technology limited by our platform.

The models in containers are easily deployable to multiple

different platforms including different hardware, operating

systems, with flexible sets of software packages defined in

the containers.

3.1.2. On Demand Big Data ETL

Once the data is ingested into the Project Data Pond which

can have global schema at the organization level, what is

required is to separate the data for each tool for the Machine

Learning tasks. This is the place where most of the common

big data extract, transform and load (ETL) operations takes

place. This component is brought up on daily scheduled hour

for big data segregation and preprocessing and is brought

down after that. This can be Google DataFlow in case of

almost real time data ETL or can be Google Dataproc for

more Batch ETL. As we are running our tool risk index

prediction pipeline only once a day, we choose to go with

Dataproc here.

3.1.3. On Demand ML Training

Depending on the orchestration platform setting if required

the training and validation model images for different tools

are pulled out and scheduled in parallel for all these tools on

AI platform. At the same time for all the remaining tools, the

prediction images are also scheduled in parallel on cloud AI

platform. All of these training, validation and prediction jobs

are run as a separate job on Cloud AI Platform and we are

just charged for the amount of hours we run these jobs.

So we do not own or manage the compute machine, we just

Figure 1. High Level Architecture

Figure 2. Platform Architecture on GCP

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

4

submit the jobs, gets the results and pay only for the compute

duration. Apart from on demand pay as we use jobs, these AI

platforms are highly scalable to run many parallel jobs at

once.

3.1.4. Output Storage and Visualization

Finally, the output of the validation and prediction jobs on AI

Platform are pushed onto the Google Big Query. We store the

tool level risk index, features used for modelling, other

important tools level details and the validation score of each

training job in Big Query. Whereas all this information can

be used by any end product or user by simple REST call,

provided they are authenticated for the data, the validation

job score is further used by orchestration platform to decide

on whether any tool family needs re-training on not.

Figure 3. Tool hierarchy

3.1.5. Workflow Orchestration

In order to manage the entire workflow, we use an

orchestration tool that can, with minimal code or

configuration, schedule the tasks and provides a rich

interface, allowing the administrator to visualize, monitor

and troubleshoot tasks. We use Google Cloud Composer

(build on top of Apache Airflow) for this purpose. With its

cross-platform support, it manages the entire process

orchestration, coordination and provide an inbuilt monitoring

web application, which not only provides the real time job/

platform status, but also keeps history of all past jobs.

3.2. Fleet Modeling

Once we have built an end-to-end scalable framework like

described above with the help of cloud or infrastructure team,

we are just halfway done for the job. The most important task

now is to systematically on board the massive asset fleet of

the organization on to the platform. And if we provided one

tool family per data scientist, given the size of our fleet, it

would take us years to onboard all the tools. This is where it

becomes important for any organization to break down and

define the tool modelling steps as given next.

3.2.1. Tool Hierarchy

As shown in left side of Figure 3, usually individual assets

belong to an asset code family. Based on type of job/

measurement (nuclear, resistivity, induction, etc.) performed

by each asset family, they are combined into different Tool

families.

A lot of times there is only a minor difference between

various asset code families, like a tool revision. Hence, we

can combine various asset code families into a broader group

called Model families, so that we can model them together

using Machine Learning, as shown in right side of Figure 3.

Though most of the times it is at model family level where

we would deploy each of the Machine Learning model, but

based on the fleet properties, it can differ and can be at other

levels as well.

Figure 4. Arrhenius hours calculation

For our fleet of 2,000,000 individual tools, on an average

400-500 tool were present at an asset code level and 5-10

asset codes were combined at a model family level.

3.2.2. Job Aggregation vs No Aggregation

Now at a model family level we must again decide whether

the tools show the failure trends on an individual tool level or

not. For all the model families which do not show the trends

at individual tool level, we should go back to our SME and

understand how we can aggregate the individual tools data

for failure trends.

For modelling the former type model families, each tool job

acts as one data point for the training algorithm, whereas for

modelling the later type of model families, each bucket of the

aggregator index act as one data point. For example,

Arrhenius equivalent hours (Laidler, 1984) is one of the most

common aggregator indices. So, in this case, first we compute

the Arrhenius equivalent hours spent by a tool in each job.

Then we must fix the bucket bin size, as a hyper parameter,

to aggregate all the tool jobs in the bin as one data point for

the modelling algorithm. This kind of model family level

aggregation becomes even more important for the tools

which have a smaller number of failures, and these failures

are mostly related to long term aggregated tool history.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

5

We calculate the Arrhenius equivalent hours by splitting

tool’s operating time into 3 sections, as shown in Figure 4.

The first section shows a rise in temperature, the second

section has a constant temperature equal to the Bore Hole

Temperature (BHT) and the final section shows a drop in the

temperature back to the initial one.

𝑡𝑠𝑝𝑒𝑛𝑡 = 𝑡𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 . 𝐴𝐹 (1)

where AF is the Acceleration Factor determined as,

𝐴𝐹 = 𝑒

𝐸𝑎
ℎ

(
1

𝑇𝑟𝑒𝑓
−

1
𝑇𝑜

)

(2)

where 𝐸𝑎 is the activation energy (𝑒𝑉), h is the Boltzmann’s

constant (8.617343×10-5 𝑒𝑉/°𝐾), 𝑇𝑟𝑒𝑓 is the reference

temperature (e.g., 150℃ for some tool families) in Kelvin and

𝑇𝑜is the operating temperature in Kelvin.

Figure 5. Smoothing failure probabilities using cubic spline

interpolation to eliminate outliers

We sample the temperature at equal intervals, with the

distribution as in Figure 4, and calculate the total Arrhenius

equivalent hours spent by the tool, in each of the three

sections.

The overall idea is to model the trend of the tool failures.

Though every sub sample of tools might give the same failure

probability trend, but the failure actual values might differ at

the subset level. For this kind of issues, we restore to learning

the average (or peak) failure trend, rather than the actual

failure trend. The values are interpolated using Linear/Cubic

Spline interpolation methods as shown in Figure 5.

3.2.3. Tool Risk Index

One of the most important decisions is the definition of Risk

Index based on how we want to use/interpret this risk index.

While exactly interpreting the risk index as the probability of

the tool failure would greatly reduce the tool modelling

approaches, a more general approach is to use the risk index

to rank the tools in the order of its failure probability. The

former one should be called the Tool Risk Probability, while

the later one must be called the Tool Risk Index.

We decided to go with Tool Risk Index, as almost every time

modelling the exact tool risk probability was not possible

with the data in hand, but in general tool ranking was still

possible to good levels. Eventually we all must move from

Tool Risk Index to Tool Risk Probability, but this would

mostly be driven by how well we capture the data for every

tool in the fleet.

3.2.4. Model Validation Metric

The actual data with such a system log is tool failure

information and by default each job can either be in healthy

or failed state, which makes this a binary class data. We can

choose to aggregate each job, say at weekly level, and find

the ratio of number of failure jobs to total number of jobs,

making it more like a regression data problem. Also, based

on the problem formulation, different error metrics would be

more appropriate. For such a wide and complex range of tool

families the Data Scientist should be free to formulate this

problem anyway possible and we must select a metric which

not just gives us a way to compare different models for same

tool family but also a way to compare models for different

tool families. We must look for a metric which overall gives

a higher risk index to risky tools and lower risk index to the

healthy tools. This metric should be more focused on the

mistake we do by giving higher risk index to a healthy tool or

other way around; i.e., absolute values are not as important

as their relative values. This is where the idea of using the

Swap Ratio as a model quality metric comes into

consideration.

For testing of models, we define a testing window, and take

all the data before this window as the training data. The data

scientists are free to choose any modelling approach and the

models for the training data, and then we compare the models

using the status of the first job in the testing window. A higher

risk index should imply a failure job and a lower risk index

imply the normal healthy job.

In Figure 6, let’s say we have N tools, for each tool gray dot

is healthy job, colored (blue, read & green) dot is a failed job.

Blue is failed job in training window, red is first failed job in

testing window and green is any failed job afterwards in or

outside the testing window. For validation or testing, the job

of interest is first job in testing window, if it is red, the tool

failed in the first testing job and if it is gray, the tool was

healthy in first testing job. In Figure 6, T3, T4, T6 are the

failure tools and T1, T2, T5 are the healthy tools. A good

model would provide higher risk index to T3, T4, T6 and

lower risk index to T1, T2, T5. So, for 3 failed and 3 healthy

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

6

Figure 6. Train and test data split

tool jobs above we have 9 pairs, {(T3, T1), (T3, T2), (T3,

T5), (T2, T1) … (T6, T5)}. We count the pairs which have

higher risk index for the healthy jobs as we want to have least

of these pairs. The ratio of these pairs to total pairs is called

the Swap ratio, as these are the number of swaps the Tool

Risk index must do to achieve the perfect model. We can use

this as the testing and validation metric.

We use an advanced version of Swap Ratio defined above,

called C-Statistics (Austin et al., 2012). With the expectation

that the probability prediction for failed jobs should be

greater than normal jobs, we get the count of jobs which are

concordant, discordant or tie, with this assumption. We

calculate an index value known as the c-index, which can

evaluate the discriminatory performance of the model as,

𝑐 − 𝑖𝑛𝑑𝑒𝑥 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠+0.5×𝑡𝑖𝑒

𝐴𝑙𝑙 𝑝𝑎𝑖𝑟𝑠
 (3)

This concordance static is equal to the area under the

Receiver Operating Characteristic (ROC) curve, with the

values ranging from 0.5 to 1, where 1 indicates perfect

discrimination and 0.5 corresponds to a model with no

discrimination ability. This approach saves the need to fix

arbitrary threshold values for classifying a prediction as

failure or not, as it varies with use cases. Also, the c-statistics

method considers all thresholds, as it is same as the area

under the ROC curve. This approach is useful when there is

no trade-off between the false positives and false negatives.

3.2.5. Model Re-training

For each model deployed to the framework, we keep track of

Swap Ratios and C-statistics for each month. When the Data

Scientists deploy the model for any model family, they are

also providing the lower bound on the mean and the upper

bound on the variance of these metric which should trigger

the model re-training job for this model family on the

platform. Usually the Data Scientist comes up with these

values based on cross-validation on training data and

confirms them with the SME for this model family. These

metrics are available to the Sustenance Engineer and the

Subject Matter Experts to keep updating in a timely manner

based on the model performance and feedback from the

actual field users. Based on the user feedbacks they can

decide to go for the parameter re-adjustment or for a complete

re-modelling for any model family.

4. EXPERIMENTAL RESULTS

The proposed architecture was implemented and tested for

various tool families including electric power cartridges,

Gamma Ray Neutron Sondes, Telemetry cartridges, Pump

out modules, etc. The data was segregated and preprocessed

to obtain desirable features as input vectors for each model

families. Features including job information like BHT per

job, pressure, density, failure details and maintenance records

were utilized for modeling based on the tool characteristics.

Various feature engineering techniques were experimented

for each family, including dimensionality reduction,

sampling and other custom-made features. Machine Learning

models like Random Forest, SVM, Gradient Boost, Linear

Regression, etc., were deployed for different tool families.

Each of these models were validated with the data over a

specified time period and resulted in C-index values in the

range of 0.8-0.9 on an average. The framework keeps track

of the validation results for each month and this can be

evaluated to decide on the need for model re-training based

on expert opinions.

5. FRAMEWORK ESTIMATES

The Project team can further optimize the above framework

in terms of development time and running time/ cost. Based

on cost/ time requirements:

1. The platform can be scheduled to run on daily to

monthly basis. For most of our model families, we

run predictions once per day.

2. The ETL Engine (DataProc in our case) can run

multiple small instances or a single large instance.

3. The tool ML training jobs are all submitted in

parallel or can be combined by the code requirement

level (like Python, R, Octave, etc., at higher level to

the individual package requirements at lower level).

The entire framework can be developed in three parallel

phases, which all play equal part in the success of the

platform

1. Software Engineering team working on developing

and setting up the cloud/on premises platform.

2. Product Owners working with end users (reliability

engineer, job planners, etc.) for usability features to

be included in the visualization tool.

3. Asset Experts working with Data Scientist to

classify the tools and develop the ML models for

each one of them.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

7

The next step for such a system would be to move from daily

to near real time predictions, where along with tool daily job

history, we also analyze the real time tool sensor data.

Though the training architecture for such a framework would

exactly be the same, there would be changes in the prediction

architecture. Along with Big Data ETL Engine we would also

need a Streaming Analytics Engine (Example for GCP would

be Cloud IoT Core with Dataflow).

6. CONCLUSION

For organizations with a very large fleet of assets, building a

Digital Fleet Management Platform is a first major step

towards data driven PHM. This demands deep technical

expertise in multiple areas, like ML, Asset Level Domain

Knowledge, Digital Infrastructure and Cloud offerings.

This paper provides guidelines on how to build a cost-

effective framework with fast response times, plus secure and

reliable operations to avoid unscheduled downtime with

systematic fleet maintenance policies. We developed a

generic framework that scales automatically with demand,

monitors the activities continuously with easy configurations

for tool onboarding, output storage and visualization. We also

defined a risk assessment factor for the tool families that can

be used to compare different tools based on a common metric.

These tool-to-tool comparisons are scheduled on regular

intervals within this framework to ensure minimal tool

failures during jobs.

NOMENCLATURE

ML Machine Learning

AI Artificial Intelligence

AWS Amazon Web Services

REST Representational State Transfer

API Application Programming Interface

SQL Structured Query Language

BHT Bore Hole Temperature

eV Electron-volt

ROC Receiver Operating Characteristic

ETL Extract, Transform, Load

SME Subject Matter Expert

SVM Support Vector Machine

IoT Internet of Things

GCP Google Cloud Platform

CI Continuous Integration

CD Continuous Deployment

PHM Prognostics and Health Management

IoT Internet of Things

REFERENCES

Alsyouf, I. (2007). The role of maintenance in improving

companies’ productivity and profitability. International

Journal of Production Economics. 105. 70-78.

10.1016/j.ijpe.2004.06.057.

Apiletti, D., Barberis, C., Cerquitelli, T., Macii, A., Macii, E.,

Poncino, M., & Ventura, F. (2018). iSTEP, an Integrated

Self-Tuning Engine for Predictive Maintenance in

Industry 4.0. 2018 IEEE Intl Conf on Parallel &

Distributed Processing with Applications, Ubiquitous

Computing & Communications, Big Data & Cloud

Computing, Social Computing & Networking,

Sustainable Computing & Communications

(ISPA/IUCC/BDCloud/SocialCom/SustainCom), 924-

931.

Austin, P. C., & Steyerberg, E. W. (2012). Interpreting the

concordance statistic of a logistic regression model:

relation to the variance and odds ratio of a continuous

explanatory variable. BMC medical research

methodology, 12, 82. doi:10.1186/1471-2288-12-82.

Ji, C., Li,Y., Qiu, W., Awada, U., & Li, K. (2012). Big Data

Processing in Cloud Computing Environments.

Proceedings of the 2012 12th International Symposium

on Pervasive Systems, Algorithms and Networks (I-

SPAN '12). IEEE Computer Society, USA, 17–23,

doi:10.1109/I-SPAN.2012.9

Kothamasu, R., Huang, S. H., & VerDuin, W.H. (2006).

System Health Monitoring and Prognostics – A Review

of Current Paradigms and Practices. International

Journal of Advanced Manufacturing Technology 28,

1012–1024). doi:10.1007/s00170-004-2131-6.

Laidler K. J. (1984). The development of the Arrhenius

equation, Journal of Chemical Education 1984 61 (6),

494 doi:10.1021/ed061p494

Lee, J., Lapira E., Bagheri B., & Kao, H. (2013). Recent

advances and trends in predictive manufacturing

systems in big data environment. Manufacturing Letters,

Volume 1, Issue 1, 2013, Pages 38-41, ISSN 2213-8463.

doi:10.1016/j.mfglet.2013.09.005.

Lee, J., Yang S., Lapira E., Kao H., & Yen, N. (2013).

Methodology and Framework of a Cloud-Based

Prognostics and Health Management System for

Manufacturing Industry. Chemical Engineering

Transactions 33:205–210. doi:10.3303/CET1333035.

Mahmud S., Iqbal R., & Doctor F. (2016). Cloud enabled data

analytics and visualization framework for health-shocks

prediction. Future Generation Computer Systems.

Volume 65, 69–181, ISSN 0167-739X,

doi:10.1016/j.future.2015.10.014

Mohammadpoor, M., & Torabi, F. (2018). Big Data analytics

in oil and gas industry: An emerging trend. Petroleum,

ISSN 2405-6561, doi:10.1016/j.petlm.2018.11.001.

Moir, K., Niculita, O., & Milligan, W. (2018). Prognostics

and health management in the oil & gas industry – a step

change. In Proceedings of the European Conference of

the PHM Society (Vol. 4 (1)).

Mounir, N., Guo, Y., Panchal, Y., Mohamed, I. M., Abou-

Sayed, A., & Abou-Sayed, O. (2018). Integrating Big

Data: Simulation, Predictive Analytics, Real Time

Monitoring, and Data Warehousing in a Single Cloud

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

8

Application. Offshore Technology Conference.

doi:10.4043/28910-MS.

Nguyen, H M., Cooper, E. W., & Kamei, K. (2011)

Borderline over-sampling for imbalanced data

classification. International Journal of Knowledge

Engineering and Soft Data Paradigms. 3. 4-21.

10.1504/IJKESDP.2011.039875.

Pop, D. (2016). Machine Learning and Cloud Computing:

Survey of Distributed and SaaS Solutions. arXiv

preprint arXiv:1603.08767 (2016).

Schwabacher, M., & Goebel, K. (2007). A survey of artificial

intelligence for prognostics. AAAI Fall Symposium -

Technical Report.

BIOGRAPHIES

Sherin Thomas is a Data Scientist at Schlumberger

Technology Center at Pune, India. She has her MTech.

degree in Computer Science from Indian Institute of

Technology, Hyderabad. Her main research interests are

machine learning, Bayesian data analysis, information

retrieval and prognostics & health management.

Abhishek Dubey is a Senior Data Scientist at Schlumberger

Technology Center at Pune, India. He has a MS degree in

Computer Science from Indian Institute of Science,

Bangalore. His area of expertise is building large scale, end

to end Machine Learning Products on cloud. His main area

of research is Deep Learning for structured & unstructured

data and prognostics & health management.

Daniel E. Viassolo is an Analytics Manager and Principal

Data Scientist with IT Data & Analytics, Schlumberger. He

is a technical expert in Machine Learning, Prognostics &

Health Management, Optimization, and Control Systems.

Daniel authored 27 US patents plus 35 papers while working

on diverse applications across Oil & Gas and Power

Generation domains. He has a PhD (Purdue University) and

Business Leadership training (Texas A&M).

Magson Zanette is Analytics Manager working with

Technology Lifecycle Management (TLM) division of

Schlumberger. He is leading the PHM projects for TLM with

the Product Centers at Schlumberger. He holds Electrical

Engineering degree from Federal University of Santa

Catarina (UFSC).

