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ABSTRACT

Faults are endemic to all systems. Adaptive fault-tolerant
control maintains degraded performance when faults occur as
opposed to unsafe conditions or catastrophic events. In sys-
tems with abrupt faults and strict time constraints, it is imper-
ative for control to adapt quickly to system changes to main-
tain system operations. We present a meta-reinforcement
learning approach that quickly adapts its control policy to
changing conditions. The approach builds upon model-
agnostic meta learning (MAML). The controller maintains
a complement of prior policies learned under system faults.
This “library” is evaluated on a system after a new fault to ini-
tialize the new policy. This contrasts with MAML, where the
controller derives intermediate policies anew, sampled from
a distribution of similar systems, to initialize a new policy.
Our approach improves sample efficiency of the reinforce-
ment learning process. We evaluate our approach on an air-
craft fuel transfer system under abrupt faults.

1. INTRODUCTION

No physical system is immune to degradation, changing en-
vironments, and faults. Since such situations can occur dur-
ing operation, it is important the system respond to these
changes in a way that the system continues to operate, be
it in a degraded manner. This ensures safety and cost-
effectiveness through less down-time. Fault-tolerant control
(FTC) (Blanke, Kinnaert, Lunze, Staroswiecki, & Schröder,
2006) seeks to keep a faulty system operating, but within an
acceptable margin of sub-optimal performance. This relaxes
the constraints on the designers to make a system completely
fail-safe and allows for a tradeoff between design and operat-
ing costs.

Data-driven approaches to FTC (MacGregor & Cinar, 2012;
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Hongm, Tian-You, Jin-Liang, & Brown, 2009) exploit the
preponderance of data collected from system operations.
They generate models that avoid the need for time-consuming
and accurate physics-based simulations of system dynamics
to analyze and respond to different situations that may occur
in the system. However, such methods depend on the data
to span the breadth of operating conditions, and the model
has to contain sufficient detail to capture multiple operating
modes. This represents another compromise between design
and operating costs.

In many cases, systems are complex, the number of possible
faults are large, and faults that have not been seen before can
occur during operations. There may not be precedent in the
data to model such behaviors. A data-driven control approach
will not then have “ground truth” to learn from and recall a
sufficiently optimal control policy. Reinforcement learning
(RL) is a semi-supervised approach to machine learning. It
forfeits dependence on labelled ground truth and instead re-
lies on accumulated feedback (i.e. experience gained) from
a sequence of actions to determine a globally optimal policy.
This ability to learn during operations alleviates design time
effort and costs.

RL relies on gathered experience to accurately evaluate ac-
tions. This can be represented as a dynamic programming
problem (Bellman, 1966) that typically has a closed-form so-
lution, but for large systems, suffers from the curse of di-
mensionality. Advancements to RL have used function ap-
proximations of values to overcome the computational in-
tractability of the problem (Boyan & Moore, 1995; Baird,
1995). However, the dependence on data to learn such ap-
proximations limits how fast and how accurately a RL-based
controller can accommodate faults.

In our past work (Ahmed, Quiñones-Grueiro, & Biswas,
2020), we developed data-driven models to supplement ex-
perience with the real environment and simulate faults. In
this work, we employ meta-RL for faster adaption of the RL
algorithm to collected data samples. Our approach is not de-
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pendent on the time-consuming step of a data-driven model
being learned first, however one can be used. The next sec-
tion provides a background on RL and meta-RL. Section 3
describes our approach, and section 4 evaluates it on a simu-
lation of a fuel-transfer system. Finally, section 5 places our
work in the context of extant research.

2. PRELIMINARIES

This section briefly introduces the RL approach and then dis-
cusses Model Agnostic Meta Learning in the context of RL-
based control.

2.1. Reinforcement Learning

Reinforcement Learning (RL) is a semi-supervised approach
to machine learning. A RL problem consists of a controller
interacting with its environment. The environment can be
modeled as a single Markov Decision Process (MDP) sam-
pled from a population of available processes, p ∼ P . At a
time t the controller perceives the environment’s state xt ∈
X , and uses its policy π : X → U to take an action ut ∈ U .
The environment goes into a new state xt+1 governed by its
transition function T : X×U → X and emits a reward signal
rt ∈ R, defined by the function R : X × U ×X → R. The
combination of (X,U, T,R) constitutes a MDP, p ∈ P .

The goal of a RL is to maximize the return, Jπ(x, u), which
represents the total discounted cumulative reward for an ac-
tion from each state when a policy, π is followed. A discount
factor γ ∈ [0, 1] is used to weigh immediate rewards over
delayed rewards and to ensure convergence of the discounted
reward function. The maximum future discounted reward for
an action from a state is its value V : X × U → R:

V (xT , uT ) = max
π

Jπ(xT , uT )

= max
π

Σ∞t=T γ
t−T · rt

= rT + γ · max
uT+1

V (xT+1, uT+1) (1)

Policy gradient algorithms (Sutton, McAllester, Singh, &
Mansour, 2000) in RL parametrize π with parameters θ, i.e.
πθ. The parameters θ are be the weights of a model repre-
senting the policy, for e.g. neural network. During training,
they directly learn πθ by implicitly optimizing for V using
gradient ascent on the gain function G ← E[Jπ(x, u)]. Gra-
dient ascent produces iterative updates to θ the size of which
is determined by the learning rate α ∈ [0, 1].

Parameter updates at each iteration are dependent on experi-
enced rewards under the latest policy. This is known as on-
policy RL. This approach is sample inefficient because new
trajectories of interactions need to be obtained for each ver-
sion of θ. A way around this is to use importance sampling

in the gain function. By modeling the policy as a stochas-
tic function over actions, πθ(x | u), the relative probabili-
ties, known as importance ratios, of the same trajectory under
different policies can be obtained. Thus, the gain function
can reuse the same batch of experiences to update the current
iteration of parameters θ′ by weighing cumulative rewards.
Equation 2 shows how importance sampling reuses experi-
ences collected under θk for the next iterations of policy pa-
rameters θk+i : i ≥ 0. The learning rate is α.

G = Ex0∼X

(
Π∞t=0

πθk+i(xt|ut)
πθk(xt|ut)

)
Jπθk (x0, u0)

θk+i+1 = θk + α · ∇θk+iG (2)

Large gradient updates may cause the next iteration of πθ to
overshoot, thus missing the optimum, causing the learning
process to diverge altogether. Proximal Policy Optimization
(PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov,
2017) clips the size of gradient updates by restricting the im-
portance ratios between iterations. Thus a policy does not
drastically change between updates. We use PPO in this work
to learn the control policy under fault conditions.

2.2. Model-Agnostic Meta Learning

Meta-learning seeks to speed up a machine learning process
through introspection. Essentially, it learns how to learn. In
a RL context, meta-learning seeks to quickly adapt a policy
trained on one process to another.

Model-agnostic Meta Learning (MAML) (Finn, Abbeel, &
Levine, 2017) speeds up the optimization of any model
learned through gradient updates. It does so by running an
inner introspective loop within each iteration of a gradient
update to the model’s parameters, which is designated as the
outer loop. In the inner loop, variants of the process are sam-
pled as pi ∼ P . The current model parameters θ are then
optimized by training for several interactions on each pi us-
ing gradient ascent to yield θi. At the end of the inner loop,
gradients on a test set of interactions are computed. In the
outer loop, the update to θ is a weighed aggregate of the test
gradients from the inner loop. That is, the training step for
the outer loop is based on the test step of the inner loop.

3. COMPLEMENTARY META-REINFORCEMENT
LEARNING

3.1. Problem Formulation

The problem of the controller is thus: to exploit its past expe-
riences with different processes, and sparse interactions un-
der new process dynamics p′ to quickly converge to a locally
optimal policy. The proposed approach for adaptive control
operates under the framework depicted in figure 1. The adap-
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Algorithm 1: Model-agnostic meta-learning
Input: parameters θk, MDPs P , learning rates αin, αout,

iterations Kin,Kout
1 begin
2 Set θ′ ← θk;
3 for kout = 1 to Kout do
4 Sample MDPs pi ∼ P ;
5 for all pi do
6 Set θi ← θ′;
7 for kin = 1 to Kin do
8 Sample training trajectoriesMi from pi;
9 Calculate gain function fromMi;

10 Update θi ← θi + αin · ∇θiG;

11 Sample test trajectories from pi;
12 Calculate test gain Gi on sample;

13 Update θ′ ← θ′ + αout · Σi∇θ′Gi;
14 return θ′

Figure 1

tion pipeline can either be preempted by fault detection, or
happen periodically.

The adaption step begins with a fault. The fault is abrupt,
causing a discontinuous change in process dynamics p→ p′.
The MDP representing the system has changed. In the after-
math of a fault, a controller continues to interact with p′ and
records states, actions, and rewards in a memory buffer M
using its current policy parameters θk. Once sufficient inter-
actions tupdate have been buffered, the controller attempts to
initialize new parameters θ′ from its memory, and then fine-
tunes them to θk+1 by interacting with the new process. Once
learning is complete, the controller consolidates the newly
learned policy with its prior policies. Thus, when a new fault
occurs, it is able to exploit its past experience and adapt faster.

The learning phase consists of two stages: the meta-update
using the memory, followed by iterations of any choice of a
gradient-based reinforcement learning algorithm on the new
process. During the meta-update, the controller uses its con-
solidated prior experience to initialize new policy parameters.
The controller can also generate a data-driven model of the
system to supplement sample inefficiency of RL. After that,
the parameters are iteratively updated by the RL algorithm
through interactions with the actual system.

Consolidation of knowledge happens via maintaining a com-
plement of prior policies C = {θ | πθ}. The set of policies is
periodically pruned to ensure that they capture diverse behav-
ior but are small enough to evaluate within time constraints.

Figure 2. The meta-update initializes policy parameters
closer to an optimum, after which RL converges faster to a
solution. The meta-update depends on the aggregate gradi-
ents of policies in the complement. The gradients are calcu-
lated from samples from a data-driven process model updated
from a buffer of recent experiences, or the buffer itself. The
meta-update step from θk to θ′ is described in algorithm 2.

3.2. Policy meta-update

Our approach mirrors MAML in that there is an outer update
loop for the main policy parameters. It depends on the gra-
dients of the test error on the inner loop. We diverge in our
formulation of the inner loop. In MAML the inner loop sam-
ples random processes from a population pi ∼ P defining the
MDP. It uses those samples to derive intermediate parameters
θi from the single starting parameter θk. We forego sampling
processes anew to derive such intermediate parameters, and
instead exploit the history of the controller’s experience. In
other words, MAML evaluates multiple processes on a single
set of parameters. We propose to evaluate a single process on
multiple sets of parameters.

Prior to the meta-update, a memoryM of interactions under
the new process is buffered. The meta-update step assumes
a complement C = {θ | πθ} of prior policies trained on the
system under different faults. This foregoes the need of sam-
pling an altogether new set of processes for the meta-update.
The complement of polices is then trained for a few stepsKin

to yield an updated set of meta-parameters. Finally, the test
error of the meta-parameters on the process is used to update
the outer loop’s policy parameters.

Optionally, as a guard against a sub-optimal initialization
θk → θ′, θk is also concurrently updated using standard RL
without meta learning to a baseline parameter θbkout for each
iteration kout of the outer update loop. Finally, the meta-
learned parameters and baseline parameters are evaluated on
a provided process model pm. Whichever performs better is
returned as the new initialization θ′.

Evaluating policies from θi ∈ C necessitates new interactions
with the changed process p′. This can be achieved by learn-
ing a data-driven model pm of the process using M. How-
ever, this introduces an additional computational load on the
meta-update step. An alternative approach, already inherent
in PPO, is to forego a model altogether and instead use impor-
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tance sampling (equation 2) to adjust the gain with respect to
θi. With importance sampling, the returns already calculated
on p′ under θk stored in M can be weighed by the relative
probabilities of actions under θi. This process is delineated
in algorithm 2 and figure 3.

Algorithm 2: Complementary meta-RL
Input: parameters θk, memoryM, learning rates

αin, αout, iterations Kin,Kout
Optional: policy complement C = {∅}, process model

pm = ∅
1 begin
2 if pm 6= ∅ then
3 Update pm fromM;
4 Sample trajectories from pm, using policy;
5 else
6 Sample trajectories fromM, discarding policy;
7 Set meta-updated params θ′ ← θk;
8 Set baseline params θb ← θk;
9 for kout = 1 to Kout do

10 Calculate gain fromM;
11 Update θb using αout;
12 for all θi in C do
13 Sample trajectories and calculate gain;
14 Update θi using αin;
15 Calculate test gain Gi;

16 Update θ′ ← θ′ + αout · Σi∇θ′Gi;
17 Calculate Jπθ′ , Jπθb from pm;
18 if Jπθ′ < Jπ

θb
then

19 return θ′ ← θb

20 else
21 return θ′

3.3. Population of complement

The final step of the approach is to store the newly learned
parameters for future reference. The complement of poli-
cies should be populated with policies such that it maxi-
mally spans the parameter space. Policies should be differ-
ent enough so that the meta-update has a greater likelihood
of adapting to novel faults. The difference between policies
is evaluated on the memory of interactions collected by the
controller. Each policy in C generates a probability for ac-
tions stored inM. KL-divergence between the probabilities
is used as a metric of difference. The total divergence of each
policy from the rest of the complement becomes a score of a
policy’s uniqueness. Given a complement size |C| ← s, the
s most unique policies are kept as new members of C. Al-
gorithm 3 goes through the process of selecting between the
existing and newly learned policies to update C.

Figure 3. An overview of the complementary MAML algo-
rithm in a FTC context. The meta-update step initializes the
policy based on a complement of policies evaluated on the
new process.
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Algorithm 3: Populating complement of policies
Input: policy complement C, complement size s,

memoryM
1 begin
2 Initialize divergence matrix D = [0]|C|×|C|;
3 for θ1, θ2 in Permute(C) do
4 Action probabilities p1, p2 = πθ1(M), πθ2(M);
5 KL-Divergence d = Σp1 · log(p2/p1);
6 D[θ1, θ2] = d;
7 Sum each row of D for total divergence D|C|×1T ;
8 Most divergent parameters C ← Sort(C) by DT ;
9 return First s parameters from C

4. EXPERIMENTS

The algorithm was evaluated on a simulation of a fuel transfer
system of an aircraft. The system is defined in greater detail
in (Ahmed et al., 2020). The objective is to maintain center
of gravity, variance in fuel distribution, and closed valves to
avoid unnecessary mass transfer. Faults can include increased
valve resistances leading to low flow rates, and increased fuel
consumption due engine faults.

A controller was first trained for 50,000 steps on the nomi-
nal system. At the beginning of a trial, a random fault oc-
curred and the controller accumulated experience in memory
M. The controller then employed the meta-update step in al-
gorithm 2 to initialize new policy parameters. Following that,
the RL algorithm continued to learn on the new system. As a
baseline, an RL controller was trained for |C| ×Kin ×Kout

iterations on pm, when pm was provided, followed by learn-
ing on the new system p′. For all experiments, a first-order
approximation of gradients∇θ′Gi as documented in (Finn et
al., 2017) is used.

Figure 4. Simplified fuel system schematics. The controller
manages valves and can observe fuel tank levels. Net out-
flow to engines via pumps is controlled independently. Pumps
drain tanks innermost first.

First, the controller was tested with an empty complement of
policies. Second, a complement of 3 policies under simu-
lated faults on the system was generated. The complement
was trained on faults in tanks 1, 3, and 5 and no engine faults.
In both cases, the controller was tested on the system under
random novel faults. The controller was allowed to adapt

solely from buffered experiences after a fault, without learn-
ing a new environment model.

Figure 5 shows performance with C = {∅}. Episodic re-
wards start off lower than but comparable to the baseline.
They quickly recover and match baseline throughout. Of note
is the low variance in episode rewards compared to the base-
line. Figure 6 shows performance with a complement of 3
policies. The controller starts off with performance similar
to the baseline, but quickly pulls ahead and converges to an
optimum. The initialization using a populated complement
allows the controller to converge to a solution faster.

Additional experiments with different values of learning rates
and loop iterations are documented in section 6.2.

Figure 5. Episodic rewards after abrupt fault when there is no
complement of policies available to the controller.

Figure 6. Episodic rewards after abrupt fault when there is a
complement of 3 policies available to the controller.
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5. RELATED WORK

Reinforcement learning has been explored for control sys-
tems. (Lewis, Vrabie, & Vamvoudakis, 2012) surveys RL ap-
proaches for feedback control. (Liu, Wang, & Zhang, 2016)
attempts to speed up learning of neural network policies for
controlling systems by manipulating the parameter update
rule.

Approaches besides RL are prevelant in the field of FTC.
(Jiang & Zhang, 2006; Zhang & Jiang, 2003) use perfor-
mance degraded reference models to generate a library of the
system under various conditions. Control is transferred to the
policy learned for the most similar model in the library.

Meta RL for FTC is a nascent field. Recently, (Nagabandi
et al., 2018) used used model-based RL for quickly adapt-
ing control to changed system dynamics. They used MAML
and a recurrent network as two approaches to develop a meta-
update rule for the environment model parameters. In our
case, however, we apply MAML towards updating the pol-
icy parameters. Alternatively, (Sæmundsson, Hofmann, &
Deisenroth, 2018) train a model to predict a latent represen-
tation of the environment. The latent variable is fed to the
agent as a conditioning variable to represent changed dynam-
ics. (Wang et al., 2016) use a recurrent neural network to
train a controller on a population of related environments.
The controller, being recurrent, has memory of this experi-
ence, and therefore learns an internal function to transition
between environments as they change.

6. CONCLUSION

We have proposed a meta-RL algorithm, which exploits a
controller’s past experience under faults to initialize parame-
ters for a new policy under a novel abrupt fault. The meta-
update can optionally use a data-driven model to mitigate
sample inefficiency, or it can fall back to using importance
sampling on buffered experiences to evaluate the complement
under current conditions. The newly derived parameters are
added to the complement if they are divergent enough from
the members of the set, thus ensuring a diverse library of be-
haviors for faster adaption to new faults.

MAML can be sensitive to choice of model architecture, task,
and hyperparameters (Antoniou, Edwards, & Storkey, 2018).
This merits further investigation on guarantees of conver-
gence and optimality under faults. MAML can be further
incorporated in our approach by using meta-learning to up-
date the data-driven model itself. This should further reduce
time taken to learn an updated model and the dependence on
the size of the buffered data.
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APPENDIX

The code and experimental setup for this work can be found
at https://git.isis.vanderbilt.edu/ahmedi/
airplanefaulttolerance/-/tree/phm2020.

6.1. Hyperparameters
Unless otherwise specified, the following parameters in table
1 were used.

Table 1. Meta-update parameters

Parameter Value
|M| 2000
αin 0.001
αout 0.001
Kin 2
Kout 4
s 3

Table 2 documents parameters used by our implementation of
PPO algorithm.

Table 2. Parameters used by the PPO algorithm.

Parameter Value
Optimizer Adam
α 0.02
β (0.9, 0.999)
Epochs 5
tupdate 2000
Value network (64, tanh, 64, tanh, linear, 1)
Action network (64, tanh, 64, tanh, 6, linear, sigmoid)
γ 0.99
ε 0.2

6.2. Additional Figures

(a) |C| = 0, αin = 0.001, αout = 0.001,Kin = 4,Kout = 1, pm =
∅. Fault in tank 4, engine 2.

(b) |C| = 3, αin = 0.001, αout = 0.001,Kin = 4,Kout = 1, pm =
∅. Fault in tank 4, engine 2.

Figure 7. Even with a single meta-update step, Kout = 1,
there is noticeable increase in performance.

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

(a) |C| = 0, αin = 0.001, αout = 0.01,Kin = 4,Kout = 2, pm =
∅. Fault in tank 4, engine 2.

(b) |C| = 3, αin = 0.001, αout = 0.01,Kin = 4,Kout = 2, pm =
∅. Fault in tank 4, engine 2.

Figure 8. Due to a higher outer learning rate αout and itera-
tion number Kout, the meta-update shows a larger change in
performance. With the help of a full complement, the parame-
ter updated is moderated in a direction such that performance
variance remains low and shows a higher rate of change.

Figure 9. |C| = 3, αin = 0.001, αout = 0.001,Kin =
4,Kout = 2, pm = ∅. Fault in tank 6. In some faults, the
initialization from the meta-update starts at a local optimum.
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