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ABSTRACT

This paper describes a fault isolation approach for electric
powertrains of unmanned aerial vehicles. The approach lever-
ages the combination of failure mode and effect analysis
(FMEA) and Bayesian networks, thus introducing depend-
ability structures into a diagnostic framework. Faults and
failure events from the FMEA are mapped within a Bayesian
network, where network edges replicate the links embedded
within FMEAs. This framework helps the fault isolation pro-
cess by identifying the probability of occurrence of specific
faults or root causes given evidence observed through sen-
sor signals. The framework is applied to an electric power-
train system of a small, rotary-wing unmanned aerial vehicle,
demonstrating how a Bayesian network enhanced by FMEA
helps disambiguate between root causes of incipient failures,
which would otherwise be considered as equally probable.

1. INTRODUCTION

Electric powertrains are at the forefront of the aeronau-
tics transformation (Raymer, 2018), (NASA, 2015), (Larson,
2015), (Rosero, Ortega, Aldabas, & Romeral, 2007). They
are expected to propel a variety of unmanned aerial vehi-
cles in the low-altitude airspace, from small drones for pack-
age delivery to larger, on-demand, urban air mobility-type of
vehicles. Autonomous, electrically-powered VTOL (vertical
take off and landing) vehicles are among the best candidates
to fulfill the new set of low-altitude airspace requirements
based on space constraints as well as operational benefits.

The foreseeable high traffic density suggests that a large
number of these electric propulsion systems will enter the
airspace, and that they will also operate at high frequency,
e.g., large number of take offs and landings per unit time.
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The reliability of such critical systems is therefore key to en-
sure high safety standards in the low-altitude airspace. Di-
agnostic systems, which aim at identifying incipient faults,
can mitigate unexpected failures or lower-than-expected reli-
ability by performing early fault detection using sensor data.
A key element of fault diagnosis is fault detection and isola-
tion (FDI), which complexity increases with the complexity
of the system itself, namely the number of subsystems and
components, interactions among sub-systems, and the num-
ber of sensors available. System diagnosis is a fundamental
step to further prognosticate the remaining useful life of a
subsystem, trigger mitigating actions during flight or request
maintenance actions in-between flights.

This work merges information from the electric propulsion
system design phase with diagnostic tools, which are often
developed later in the product lifecycle, or retrofitted to ex-
isting specimens. Information from the failure mode and ef-
fect analysis (FMEA) from the system design phase is em-
bedded within a Bayesian network (BN) (Pearl, 1985). Each
node in the network can represent either a fault, failure mode,
root cause or effect, and the causal relationships between dif-
ferent elements are described through the connecting edges.
The approach demonstrates that FMEAs can aid diagnostics,
prognostics and health management by feeding causal rela-
tionships identified during the design phase into a diagnostic
framework. Earlier works in this area can be found in (Lee,
2001), where the idea of mapping FMEA into BNs was de-
veloped, and (Bobbio, Portinale, Minichino, & Ciancamerla,
2001), where a failure tree was embedded in BN.

Earlier research work in the area of autonomous system di-
agnosis was presented in (Kulkarni, Celaya, Biswas, &
Goebel, 2012; Daigle, Sankararaman, & Kulkarni, 2015),
which focused on individual systems and components to im-
plement prognostics methodologies. In the later approaches,
effects of component-level degradation on the system as a
whole were studied to implement the prognostics framework
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Figure 1. Process Flow Chart of the implemented approach
to UAV Health Management

(G. Gorospe, Kulkarni, & Hogge, 2017; G. E. Gorospe &
Kulkarni, 2017). The development of new models and inte-
gration with previous models enables us to study and iden-
tify cascaded effects of degradation on connected power-train
systems during operation. In (Hogge et al., 2018), the im-
plementation of a prognostic framework to batteries in fixed-
wing e-UAS was studied. The process flow in Figure 1
shows the implementation of the integrated FMEA and Qual-
itative Bayesian approach, and where the FDI methodology
discussed in this work stands in the health monitoring frame-
work proposed in those previous works1.

This work differs from earlier attempts where BNs aided the
design of the FMEA structure (Lee, 2001), and from (Bobbio
et al., 2001), where dependability between system compo-
nents were defined by failure trees. Here, the BN supports
FDI, possibly in real time as new sensor data are collected
during or post-flight capturing system aging and degradation
to update failure probabilities. The specificity of the elec-
tric powertrain health monitoring system also require further
adaptation of previous works. The paper discusses issues re-
lated to the embedding of probability of fault detection, false
alarms, and other indicators of system diagnosis performance
into the framework.
1The acronyms in Figure 1 not yet defined will be defined later in the section.

The paper’s goal are two-fold. First, present how the devel-
oped approach can help FDI, discussing issues like probabil-
ity of mis-detection, false alarms, and sensor sensitivity in
compiling the conditional probability tables. Second, embed-
ding of FMEA information into a BN for a specific case study,
namely the powertrain system of a small e-UAV. The result
is a framework capable of isolating the cause of sub-system
level fault and degradation.

Our broader research effort is to identify failure modes,
develop a failure modes and effects criticality analyses
(FMECA) for the system and combine it within a fault
detection and prognostics framework. This research is aimed
towards accomplishing the following objectives:

• Identify and quantify the effects of the identified haz-
ards, the severity and probability of their effects, their
root cause and the likelihood of each cause.

• Develop a Bayesian framework for fault detection and
isolation

• Based on the FDI output estimate health of the faulty
component and predict the remaining useful life (RUL),
by also performing uncertainty quantification (UQ) for
all the steps of the process.

• To identify potential electric powertrain hazards and per-
form a functional hazard analysis (FHA) for unmanned
aerial vehicles (UAVs)/ Urban Air Mobility (UAM) ve-
hicles.

2. BACKGROUND

The need for safety assurance and health management capa-
bilities is particularly relevant for aircraft electric propulsion
systems, which are relatively new and with limited (or none)
historical data to learn from. They are critical systems re-
quiring high power density along with reliability, resilience,
efficient management of weight, and operational costs. It is
clear how a fault diagnosis and prognosis tool can aid such
safety and reliability requirements, as well as system state-
awareness, thus enabling autonomous decision making capa-
bilities for safe and efficient operation. The approach pro-
posed in this paper allows to compute in quantitative ways the
failure probabilities of the components (or sub-systems) of
such complex systems, while integrating modeling and mea-
surement uncertainty.

2.1. Failure Mode and Effect Analysis

Failure Mode and Effect Analysis (FMEA) methodology has
evolved over the years, introducing variations like process
FMEA, design FMEA, FMEA embedding criticality analy-
sis (failure modes, effects, and criticality analysis, FMECA),
etc. In this work a general FMEA methodology is being im-
plemented. In reference to the general definition SAE J1739
(SAE, 2015), the scope is narrowed here, with the key ob-
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jective of FMEAs to recognize and evaluate potential failures
and their effects, identify the weak links within the system
(i.e., powertrain) that leads to failures, and develop resources
to reduce the chance of potential failure occurring at those
links. The FMEA will aid the diagnostic process by provid-
ing the causal links among failure events potentially occur-
ring within the system.

The list below shows an FMEA header example. Such a list is
not always exhaustive, and subject to changes based on par-
ticular component, system, application etc.

• Failure / degradation mode
• Failure effect
• Severity
• Cause
• Frequency
• Detectability
• Risk Priority Number

The FMEA table developed is based on this header example
but curated for a powertrain of a quadrotor electric vehicle
discussed later in the Section 3. Functions were defined at the
equipment level to facilitate the development of meaningful
functional failures. Each function was reviewed and potential
failure modes were postulated for each function and assigned
failure mode.

Failure rates depend and vary based on design, application,
and operation of the system. Reliability is designed into
equipment based on operational requirements, which is de-
veloped by the manufacturer based on resulting consequences
observed in terms of severity or criticality due to failure. In
this study, some of the failure rates were obtained through
the manufacturer of the subsystems, while some others were
defined based on similarities to other systems. In the future,
once the actual failure rates are obtained, the tool will be able
to generate an updated output.

Currently, state-of-the-art components designed for spe-
cific distributed electric/hybrid-electric propulsion vehi-
cles may not have accurate reliability data based on opera-
tions (Darmstadt & et al, 2019). This gap is currently being
filled thanks to some parallel work (Kulkarni et al., 2017),
where a hardware-in-loop testbed in being developed to test
and age the components. Some of our earlier work included
Virtual lab (Kulkarni et al., 2017) where powertrain compo-
nents were loaded using realtime data from the UAV vehicle
to age the subsystems. Once the system is fielded in the
testbed, aging tests are performed using accelerated aging
methods, and the system is tracked to keep records of any
degradation due to operational loads. The data from which is
then used to update the degradation/failure rates of respective
sub-system.

FMEAs may not cover all possible fault modes when sys-
tems become very complex. Hence, for such systems, ap-
proaches to combine FMEA and FTA are being implemented
(Cristea & Constantinescu, 2017). FTA is a top-down anal-
ysis approach which captures interrelationships between re-
spective subsystems of the powertrain. The FTA documents
any catastrophic or severe outcome at the top level, while the
less severity hazards become evident based on the FTA struc-
ture that describes the subsystems interrelationship with each
other. The UAV propulsion system consists in the electronics
that control the motors, the motors, and batteries, all captured
in the FTA. The top level hazards defined from the propulsion
system FHA were used to inform the top level of the fault tree.
The FMEA combined with details from FTA is evolved fur-
ther using an Bayesian framework which will be discussed in
the later section.

2.2. Bayesian Networks

Bayesian Networks (BNs) are directed acyclic graphs where
nodes represent propositions or variables, the arcs represent
the existence of direct causal influences between the linked
propositions, and the strength of the causal relationships is
represented through conditional probabilities (Pearl, 1985).
The example below, reproduced from (Pearl, 1985), is used
as illustrative explanation of how BN works.

Figure 2 shows a representative BN, where the complete joint
probability distribution p (x1, x2, x3, x4, x5, x6) is the prod-
uct of the conditional probabilities of each proposition given
its ancestors, Eq. (1).

p (x1, . . . , x6) =p(x6|x5) p(x5|x2, x3) p(x4|x1, x2, x3)

p(x3|x1) p(x2|x1) p(x1)

(1)

The joint probability distribution could also be expressed

Figure 2. Example of directed acyclic graph used to create a
Bayesian network.
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with the short notation:

p (x) =

n∏
j=1

p (xj |aj) , (2)

where aj represents the set of ancestors of variable xj , and
x is the random vector containing all variables x1, . . . , xn

(Pearl, 2000; Bobbio et al., 2001). For example, the term
p(x4|x1, x2, x3) becomes p(x4|a4).

Dependencies among propositions are described through the
definition of sets of ancestors (or parents) and descendants
(or children). For example, the set {x1, x2, x3} contains the
ancestors of x4, while {x2, x3} contains the children of x1.
This structural model allows analysis over interventions, i.e.,
enable the computation of the joint probability density func-
tion (pdf) conditioned on some specific assumptions over a
specific variable in the network (Pearl, 2000). Starting from
the example in Figure 2, it is possible to evaluate the joint pdf
given, e.g., x2 has been defined True:

pX2=1 (x1, x3, . . . , x6) =p(x6|x5) p(x5|X2 = 1, x3)

p(x4|x1, X2 = 1, x3) p(x3|x1)

p(x1) .

(3)

The dependency of x2 from x1 has been removed in Eq. (3),
since forcing X2 = 1 does not depend on the value of x1.
Therefore, the edge connecting x1 to x2 should be removed to
represent the proposed intervention. The challenge presented
by BN is the assessment of all conditional probabilities of
the system. Each node of the network requires a conditional
probability table that defines the probability of the node being
1 (or 0) given all possible values of its ancestors. The dimen-
sion of the table increases in a combinatorial fashion with the
number of ancestors. Some of these issues are addressed in
Section 3 where a BN is applied to a electric propulsion sys-
tem diagnosis.

2.3. Moving from FMEA to BN

In order to develop an efficient system level diagnosis pro-
cedure that takes uncertainty into account, both information
from the FMEA and from the BN are combined. To this end,
two main steps are involved: (i) build the BN structure and
(ii) establish the conditional probability tables (CPT) of each
node.

In order to construct the BN structure, the qualitative infor-
mation about failure modes, causes and effects contained in
the FMEA worksheet are transformed into nodes. As a start-
ing point, observable nodes (simulating sensors), may repre-
sent simply events triggered by sensor signals, like, for ex-
ample, a boolean variable for “temperature of the electronic
speed controller too high”. Such information can help disam-
biguate among potential causes of the observed event. Then,

the relationships between each node is defined by pointing
arcs from causes to failure modes, and from failure modes to
effects, resulting in the construction of the BN structure. A
simple example of a BN structure build from FMEA is shown
in Fig.3 for illustration.

Cause 1 Cause 2 Cause 3

Failure
mode 1

Failure
mode 2

Effect 1 Effect 2

Figure 3. Example of a simple BN structure build from
FMEA.

Once the BN structure is built, the next step consists in as-
signing prior marginal probabilities to the root nodes (with no
ancestors) and conditional probabilities to each of the other
nodes, based on the qualitative information provided by the
FMEA.

Probability values can be defined for example from historical
failure data, expert knowledge about the probability of failure
of each component, or by using maximum entropy theory as
in (Gilabert, 2011).

Once the BN is completely defined, it can be used to detect
and localize a fault within a complex system by turning ob-
servable nodes to True or False. The diagnosis procedure up-
dates the probabilities using Bayesian inference in order to
determine the root cause with the highest failure probability
when an evidence (observable) node is triggered. The evi-
dence nodes, also known as fault symptoms, are associated
to observed variables such as sensor measurements, and can
be for example triggered when the observed value exceeds a
certain threshold.

Possible external sources that can affect the diagnosis pro-
cedure, such as environmental conditions or false alarm, are
discussed in the next section.

2.4. Modeling approach and issues

The dependency among elements in FMEAs do not have to
be restricted to deterministic relationships in BNs (Bobbio et
al., 2001), and this property intrinsically enhances the mod-
eling of the diagnostic system. Let us consider, for simplic-
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Table 1. Example of conditional probability table for a fault
event with two known root causes.

x1 x2
f

0 1

0 0 p0|0 0 p1|0 0
0 1 p0|0 1 p1|0 1
1 0 p0|1 0 p1|1 0

1 1 p0|1 1 p1|1 1

ity, a fault event f with two root causes, its ancestors, x1

and x2. Table 1 is the conditional probability table of the
model, where probabilities are defined through three binary
subscripts i, j, k ∈ {0, 1}. The term pk|i j defines the prob-
ability of the outcome k given values i, j, with k referring to
the fault event f and i, j referring to its ancestors x1 and x2.
For example, p1|0 0 is the probability that f = 1 given both
ancestors x1, x2 are 0 (or False).

The fault event may happen, with low probability, because of
external causes or unknown events not described by its an-
cestors. Such external forcing was called Common Cause
Failures in (Bobbio et al., 2001), and following that idea,
p1|0 0 ≥ 0, and so p0|0 0 = 1 − p1|0 0. On the opposite side
of the spectrum, the fault event may not happen even if both
ancestors are activated (true). This option describes the abil-
ity of a system to work partially or reconfigure, (Bobbio et
al., 2001), or describes a statistical relationship between the
three elements, suggesting that root causes do not determin-
istically trigger the failure, so p1|1 1 < 1. As a result, the
two ancestors may occur without triggering the fault event,
so p0|1 1 ≥ 0 and p1|1 1 = 1 − p0|1 1. Different ancestors
may influence the fault event in different ways, e.g. accord-
ing to the severity of the root cause. This properties can be
easily embedded in the network by assigning different values
to the probabilities conditioned over {X1 = 1, X2 = 0} and
{X1 = 0, X2 = 1}.

In addition to the cases of failures induced by external vari-
ables or prevented system reconfiguration, the BN should also
account for the performance of the measuring and/or detec-
tion system. In the proposed architecture, the evidence used
to perform inference over the network is collected through
sensors that measure variables connected (directly or indi-
rectly) to the fault event we aim to detect. The sensor per-
formance or, similarly, the ability of the detection system to
identify anomalous sensor data, should be embeeded in the
estimation of the CPT values. Reconnecting to the previous
example, therefore, the element p0|0 0 in Table 1 should ac-
count for false alarm rates, and p1|1 1 should include, on top
of any statistical relationship between the elements, the prob-
ability of misdetection.
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Figure 4. Schematic of basic quadcopter powertrain ele-
ments.

3. ELECTRIC PROPULSION CASE STUDY

This section shows how the BN-FMEA can aid the fault iso-
lation process for a sub-system of the powertrain of a small
autonomous rotorcraft by showing a simple, yet representa-
tive, working example. The powertrain design consists of a
Li-ion battery composed of Li battery packs, power condi-
tion unit, electronic speed controller (ESC) with pulse-width
modulation (PWM), and brushless DC motor. A scheme of
the powertrain is shown in Figure 4.

From a practical standpoint, the first step is to build a FHA to
assess any associated risk of failure in the system. The output
from the hazard analysis is an assessment of the different type
of hazards along with their probability of failures. Then, the
analysis can move to FMEA/FMECA to include reliability
and performance information, as well as the effect of faults
and non-catastrophic failures.

The knowledge of prior probabilities typically comes from
operational data, OEM data-sheets, and SME’s to develop the
framework. However, the probability of occurrence of fail-
ures from the FHA and FMEA can be qualitative, if historical
data are not available, and that is the approach utilized in this
work, to exemplify the methodology.

Bayesian theorem, at the foundation of BNs, can be im-
plemented using quantitative as well as qualitative methods
(Humphreys & Jacobs, 2015; Medow & Lucey, 2011), and
so it is particularly suitable for the approach utilized here.

A simplified FMEA for a UAV vehicle currently used for our
experiments is shown in Table. 2. This is a dynamic working
table and is being updated as additional information becomes
available from either the operation tests or SME’s. The ex-
amples of BN application shown in the later subsections are
based on the information from such table. The table is used to
compute the qualitative conditional probability of occurrence
of each element of the powertrain in the case sutdy.
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Table 2. FMEA for quadrotor e-UAS power-train system

Component Faults Root Cause Effect on UAV Effect on Airspace Severity Probability of
Occurrence

Safety
Critical

Battery Pack SOC Operational Conditions Directly affects opera-
tion of the power train
system

In case the SOC goes below
set low threshold and UAV is
not able to do a safe landing
may violate safety with crash
landing/ may interfere in path
of other UAV

High High High

Battery Pack SOH Operational conditions,
loading profiles

Aging in the batteries
may not directly affect
other systems

The UAV may not able to do
certain maneuvers within re-
quired time period

High High High

Motor (Single) Low insulation
resistance

Operational conditions,
loading profiles

Aging in the batteries
may not directly affect
other systems

The UAV may not able to do
certain maneuvers within re-
quired time period

High High High

Motor (Single) Bearing Faults,
mass unbalance

Operational conditions,
loading profiles

Aging in the batteries
may not directly affect
other systems

The UAV may not able to do
certain maneuvers within re-
quired time period

High High High

Motor (Single) Power Con-
sumption

change in winding resis-
tance, bearing faults

High draw currents de-
crease the battery RUL
shortening flight time
considerably

In case the SOC goes below
set low threshold and UAV is
not able to do a safe landing
may violate safety with crash
landing/ may interfere in path
of other UAV

Medium Medium Low

Motor (Multiple) Power Con-
sumption,
Low insulation
resistance,
bearings

change in winding resis-
tance, bearing faults

High draw currents de-
crease the battery RUL
shortening flight time
considerably

In case the SOC goes below
set low threshold and UAV is
not able to do a safe landing
may violate safety with crash
landing/ may interfere in path
of other UAV

High Low High

ESC (Single) Power Con-
sumption

operational stress, High
electrical, thermal stress
on the components

Change in switching
frequency, MOSFET
degradation, stuck
faults

The UAV may not able to do
certain maneuvers within re-
quired time period and flight
profile

Medium Low Low

ESC (Multiple) Power Con-
sumption

operational stress, High
electrical, thermal stress
on the components

Change in switching
frequency, MOSFET
degradation, stuck
faults

The UAV may not able to do
certain maneuvers within re-
quired time period and flight
profile

High Low High

CES Filtering
Capaci-
tor/MOSFET
failures

Operational stress, High
electrical, thermal stress
on the components

Directly affects opera-
tion of the power train
system

The UAV may not able to do
certain maneuvers within re-
quired time period and flight
profile

High Low High
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If the qualitative probability is in one of the intermediate cat-
egories, then further analysis is required and identified by the
fault diagnosis framework. Further, once the fault is detected
and isolated using the BN-based tool, the prognostics tool can
be triggered to estimate and predict the RUL for the faulty
sub-system. In this case the remaining useful time is defined
as the time till the state of charge (SOC) of a battery pack
reaches a lower bound threshold. In the next section an ex-
ample is discussed which includes a few components from
Table 2 for demonstration of the framework.

3.1. Case Study Scenarios

In this Subsection, different scenarios of faults observed in
each of the sub-systems is discussed. These are based on the
operational load conditions for the vehicle and may occur in
flight. In the later section each fault case considered is then
further used in the Bayesian formulation.

3.1.1. Batteries

Under nominal conditions the battery voltage is above a cer-
tain threshold during which time the vehicle is able to perform
all required objectives which are updated prior as part of the
flight plan.

Lithium corrosion, plating, electrolyte layer formation, and
contact losses are examples of faults that batteries are sus-
ceptible to (Daigle & Kulkarni, 2013). These faults lead to
an increase in internal resistance and impedance, as well as
a decrease in charge capacity. These are related to the state-
of-health (SOH) of the battery. Based on vehicle and safety
requirements, the SOC threshold is set such that the vehicle
must be capable to make a safe landing. Nonetheless, cer-
tain faults may lead to the battery discharging at a faster rate.
This could be due to some internal battery pack fault or due to
other connected subsystems down the stream. One of the sce-
narios considered is a large resistive fault in the wiring which
may discharge one of the battery packs faster and loose SOC
considerably. The faults described here will be at the founda-
tion of the BN utilized to perform FDI.

3.1.2. Electronics Speed Controller

Electronics speed controllers (ESCs) are half bridge rectifiers
and most of the faults observed in them are due to switching
circuits. Faults in the conditioning circuit are not considered
here. Such switching-circuit faults are observed when the
MOSFETs are not synchronized while operating, or when the
switching circuit is malfunctioning (G. Gorospe et al., 2017).
The first one results in a variable PWM control waveform,
and the second one results in a non-operational voltage phase
switching pair. Generally, a degraded ESC or an ESC operat-
ing under a faulty condition will draw more/less current than
a healthy ESC when operating under similar environmental
conditions and load.

3.1.3. BLDC Motor

DC motors are susceptible to mechanical faults in the form
of general motor or bearing wear, and electrical faults in the
form of poor contacts and insulation deterioration (Abramov,
Nikitin, Abramov, Sosnovichellasosnovich, & Bozek, 2014;
Awadallah & Morcos, 2002). Typically, changes in the vi-
bration characteristics are caused by mechanical faults, and
changes in the current draw characteristics are caused by elec-
trical faults, but can also be caused by mechanical degrada-
tion. For example, bearing wear can result in increased fric-
tion, which would result in higher current draw to maintain
the same output due to the increase in mechanical resistance.

In addition, winding degradation over time, due to high load
usage, cause changes in insulation resistance. Winding faults
can lead a short or open circuit condition.

3.2. Computing conditional probabilities given sensor-
based fault detection

In this section, the fault diagnosis procedure presented earlier
in Section 2.3 is applied to the fault scenarios described in
Section 3.1.

First, based on the FMEA in Table 2, the BN architecture of
the case study is developed. As can be seen in Figure 5, dif-
ferent colors distinguish the main components; battery nodes
are in blue, motor nodes in red and ESC nodes in pear green.
The root cause nodes in black represent chemical reaction in
the battery (chem), flight profile, operational conditions (op.
cond), and electrical/thermal stresses (el. therm stress). As
described in the previous subsection, the failure mode nodes
are composed of: (i) three battery faults, SOC, SOH and ther-
mal runaway (therm. runaway), (ii) two ESC faults, MOS-
FET and PWM, and (iii) two motor faults, bearing and wind-
ing resistance (winding res.). Finally, the observation nodes
for each of the three components are related to their voltage,
current and temperature measurement sensors; battery volt-
age Vb, current Ib, and temperature Tb, ESC voltage Ve, cur-
rent Ie, and temperature Te, and motor voltage Vm, current
Im, and temperature, Im.

The architecture shows the causal relationships between the
nodes, but it is necessary to quantify such relationships by as-
signing all node prior probabilities conditioned on the state of
their ancestors. Despite the limited size of the problem con-
sidered, the solution requires the definition of several CPTs.
The prior conditional probabilities utilized to produce the re-
sults are reported in Appendix 5. They are based on qualita-
tive assumptions by subject matter experts, are for illustration
only and should not be considered accurate. Indeed, as more
information about the system failure probabilities are avail-
able over operational usage, these values can be updated for
more accuracy. The prior probability of root causes like oper-
ational conditions or flight profile (black nodes) are all set to

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 5. Bayesian network of the powertrain case study

default values of 1e-6, since those are dependent on the true
operations of the vehicle. Also, assessing such causes, for ex-
ample whether the ambient temperature is high with respect
to the operational range of the battery, is straightforward, and
the corresponding nodes could be set to True to assess how
much such external factors influence the isolation process.

Once the prior probability values are assigned to each of the
nodes, the constructed BN can be used for fault isolation.
Indeed, when abnormal sensor measurements are detected,
the BN will update the failure probability values of the fault
nodes. This will allow the isolation of the most probable
faulty component, which is the one with the highest failure
probability given the abnormal sensor measurements. The
proposed diagnosis methodology in this paper is based only
on the multiple sensor measurements, and enables the dis-
ambiguation of the causes. For simplicity, performance of
sensors or anomaly detection systems is not discussed, and
implicitly embedded in the conditional probability tables in
Appendix 5. However, the reader is referred to Subsection
2.4 and references therein for additional details on the sub-
ject.

The MATLAB open source toolbox (https://github.com/bayes-
net/bnt) was used to compile the network and compute the
posterior probabilities. The latter were calculated by re-
solving the network using a junction tree algorithm, which
perform exact inference (Lauritzen & Spiegelhalter, 1988).
Given the limited size of the example proposed here, exact
inference was achieved in a few seconds of computation.

More complex or larger BN may need approximate inference
methods to resolve the entire network.

In the synthetic failure scenario illustrated here, all three volt-
age sensors Vb, Ve and Vm indicate anomalous values. The re-
lationship between those voltage sensors and potential faults
are visible in Figure 5. Changes in voltage readings at the
battery level Vb can be caused by SOC, SOH or changes in
the winding resistance of the motor. Similarly, changes in
voltage readings at the ESC and motor level Ve, Vm can be
caused by MOSFET or PWM faults, or again by the winding
resistance of the motor.

If all 3 sensors suggests anomalous voltage values, however,
the BN suggests that the most probable cause is the battery
SOC, given the direct link to the voltage measurements at the
battery level:

Pr{SOC = 1|Vb, Ve, Vm} = 0.82021 ,

Pr{SOH = 1|Vb, Ve, Vm} = 0.5943 ,

Pr{TR = 1|Vb, Ve, Vm} = 0.00056469 ,

Pr{MOSFET = 1|Vb, Ve, Vm} = 0.044391 ,

Pr{PWM = 1|Vb, Ve, Vm} = 0.45402 ,

Pr{bearing = 1|Vb, Ve, Vm} = 0.00049766 ,

Pr{M.Wind. = 1|Vb, Ve, Vm} = 0.50274 .

The second most probable cause is the battery SOH, also
strictly connected to the voltage. The third most likely cause
is a change in winding resistance of the motor, since it affects

8
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the voltage at all levels (battery, ESC, motor). Therefore, af-
ter investigating the charge and the health of the battery, the
network aid identification by pointing to the component that
most likely affect the voltage of the powertrain system, which
is the motor windings.

Finally, a second example shows only two voltage nodes with
abnormal values, Ve and Vm. In this case, the obtained poste-
rior failure probabilities are:

Pr{SOC = 1|Ve, Vm} = 0.073429 ,

Pr{SOH = 1|Ve, Vm} = 0.070601 ,

Pr{TR = 1|Ve, Vm} = 7.2931e− 05 ,

Pr{MOSFET = 1|Ve, Vm} = 0.2991 ,

Pr{PWM = 1|Ve, Vm} = 0.65794 ,

Pr{bearing = 1|Ve, Vm} = 6.5254e− 05 ,

Pr{M.Wind. = 1|Ve, Vm} = 0.073662 ,

The observed failure probabilities with abnormal values ob-
served in Ve and Vm detect and isolate PWM and MOSFET
as most probable fault modes than the others. The reason lies
in the connection of the motor winding with the voltage at the
battery level, Vb. Winding resistance affects all three voltage
readings; since Ve = 1, Vm = 1, but Vb = 0, the probability
that a change in winding resistance causes the current state of
the network is very low, and comparable with the probability
that a battery anomaly (SOC or SOH) is causing such a state.

Thus the BN-based tool appears to be able to detect and iso-
late faults based on the their failure probabilities. Though this
is not the final version of the proposed tool, and still a work-
in-progress. As discussed earlier in the Section, with addi-
tional information from experiments, SME’s, etc, it is possi-
ble to further fine tuning the CPTs and introduce quantitative
values for the probability of mis-detection and probability of
false alarms, thus enhancing the accuracy of the BN posterior
probabilities when a fault is detected.

4. CONCLUSIONS

This work presented the integration of failure mode and effect
analysis (FMEA) with Bayesian networks (BN) to enhance
fault detection and isolation approaches for electrical pow-
ertrain systems. The methodology does not introduce novel
instruments, but rather takes advantage of the synergistic ef-
fect of design tools (FMEA) and computer science methods
(BNs) to enhance the powertrain system diagnosis.

The BN is composed of nodes representing faults, failure
modes, sensors (or anomaly detectors), and root causes, di-
rectly coming from the design FMEA of the system. The
challenge, already well known in the field of reliability anal-
ysis, is represented by the assessment of the failure probabil-
ities, and the effort to fill conditional probability tables that

grow exponentially with the number of ancestors. However,
the preliminary analysis presented here suggests that even
qualitative assessment of such probabilities can help disam-
biguate between faults that could be defined equally probable
without information from the FMEA and their likelihood of
occurrence.

The methodology applied to this specific example focuses on
fault isolation in a small electric vehicle powertrain. How-
ever, the broader goal of the research is to provide a com-
prehensive tool to perform anomaly detection, diagnosis and
prognosis methodologies to electric aircraft system. This ob-
ject is supported by experimental activities aimed at refining
and testing such diagnostic and prognostic tools.

Next steps of the research include the enhancement of the
BN model with multiple rotors, to represent a typical UAV
configuration, add fault quantification to asses severity, and
eventually perform failure prediction.

5. ACKNOWLEDGMENTS

This work was supported by the System-Wide Safety (SWS)
project under the Airspace Operations and Safety Program
within the NASA Aeronautics Research Mission Directorate
(ARMD).

REFERENCES

Abramov, I. V., Nikitin, Y. R., Abramov, A. I., Sosnovichel-
lasosnovich, E. V., & Bozek, P. (2014). Control and
diagnostic model of brushless dc motor. In Journal of
electrical engineering.

Awadallah, M. A., & Morcos, M. M. (2002). Stator-
winding fault diagnosis of pm brushless dc motor
drives. In IEEE (Ed.), Large engineering systems
conference on power engineering (p. 147-152). doi:
10.1109/LESCPE.2002.1020681

Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla,
E. (2001). Improving the analysis of dependable sys-
tems by mappping fault trees into bayesian networks.
In Reliability engineering and systems safety (Vol. 71,
p. 249-260).

Cristea, G., & Constantinescu, D. (2017, oct). A comparative
critical study between FMEA and FTA risk analysis
methods. IOP Conference Series: Materials Science
and Engineering, 252, 012046.

Daigle, M., & Kulkarni, C. (2013, October).
Electrochemistry-based battery modeling for prog-
nostics. In Annual conference of the prognostics and
health management society 2013 (p. 249-261).

9



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Daigle, M., Sankararaman, S., & Kulkarni, C. (2015, March).
Stochastic prediction of remaining driving time and
distance for a planetary rover. In 2015 ieee aerospace
conference.

Darmstadt, P., & et al. (2019, June). Hazards analysis and
failure modes and effects criticality analysis (fmeca) of
four concept vehicle propulsion systems (Tech. Rep.).
NASA.

Gilabert, A. G. E. (2011). Mapping fmea into bayesian net-
works. International Journal of Performability Engi-
neering, 7(6), 525–537.

Gorospe, G., Kulkarni, C., & Hogge, E. (2017). A study
of the degradation of electronic speed controllers for
brushless dc motors. In Asia pacific conference of the
prognostics and health management society.

Gorospe, G. E., & Kulkarni, C. S. (2017). A novel uav elec-
tric propulsion testbed for diagnostics and prognostics.
In 2017 ieee autotestcon (pp. 1–6).

Hogge, E., Bole, B., Vazquez, S., Kulkarni, C., Strom, T.,
Hill, B., . . . 8, C. Q. (2018). Verification of prognostic
algorithms to predict remaining flying time for electric
unmanned vehicles. In International journal of prog-
nostics and health management, issn 2153-2648, 2018
021.

Humphreys, M., & Jacobs, A. (2015). Mixing methods: A
bayesian approach. In American political science re-
view.

Kulkarni, C. S., Celaya, J. R., Biswas, G., & Goebel, K.
(2012). Towards a model-based prognostics methodol-
ogy for electrolytic capacitors: A case study based on
electrical overstress accelerated aging. International
Journal of Prognostics and Health Management, 5(1),
16.

Kulkarni, C. S., Gorospe, G., Teubert, C., Quach, C., Daraf-
sheh, K., & Hogge, E. F. (2017). Application of
prognostics methodology to virtual laboratory for fu-
ture aviation and airspace research. In Aiaa modeling
and simulation technologies conference. American In-
stitute of Aeronautics and Astronautics.

Larson, G. C. (2015, Dec). Electrical power will change the
look of aviation. Air and Space Magazine.

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local com-
putations with probabilities on graphical structures and
their application to expert systems. Journal of the
Royal Statistical Society: Series B (Methodological),

50(2), 157–194.
Lee, B. H. (2001). Using bayes belief networks in industrial

fmea modeling and analysis. In Ieee proceedings of the
annual reliability and maintainability symposium.

Medow, M., & Lucey, C. (2011). A qualitative approach to
bayes’ theorem. In Bmj evidence-based medicine.

NASA. (2015). Nasa electrified aircraft propulsion (eap)
activities.

Pearl, J. (1985). Bayesian networks: A model cf self-
activated memory for evidential reasoning. In 7th con-
ference of the cognitive science society.

Pearl, J. (2000). Causality: models, reasoning and inference.
MIT Press Cambridge, MA.

Raymer, D. P. (2018). Aircraft design: A conceptual ap-
proach. AIAA.

Rosero, J., Ortega, J., Aldabas, E., & Romeral, L. (2007,
April). Moving towards a more electric aircraft. IEEE
Aerospace and Electronic Systems Magazine.

SAE. (2015, Jan). Potential failure mode and effects analysis
in design. J173 200901.

BIOGRAPHIES

Chetan S. Kulkarni is a Research Engineer with KBR Inc,
at NASA Ames Research Center, Calif. He received the B.E.
(Bachelor of Engineering) degree in Electronics and Electri-
cal Engineering from University of Pune, India in 2002 and
the M.S. and Ph.D. degrees in Electrical Engineering from
Vanderbilt University, Nashville, TN, in 2009 and 2013, re-
spectively. His current research interests include physics-
based modeling, model-based diagnosis and prognosis for
complex systems. Dr. Kulkarni is a member of the Prog-
nostics and Health Management (PHM) Society, SM AIAA
and SM IEEE.

Matteo Corbetta is a Research Engineer with KBR Inc, at
NASA Ames Research Center, Calif. His research interests
include surrogate modeling, model-based and data-driven al-
gorithms for diagnostic and prognostic, and uncertainty quan-
tification methods for autonomous systems. He is a member
of the editorial board of the PHM Society, and a member of
AIAA and IEEE.

Elinirina I. Robinson is a Research Engineer with KBR Inc,
at NASA Ames Research Center, CA. Prior to joining NASA,
she received a Ph.D. in Automatic Control in 2018, jointly
from ONERA and CNAM (Paris, France), about model-based
prognostics for aerospace systems. She received in 2015
an Engineer’s Degree in Electrical Engineering from ENSIP
(France) and a MSc. in Automatic Control from University of
Poitiers (France). Her research interests include diagnostics
and prognostics approaches for electrical propulsion systems,

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Op. Cond Flight Prof. Pr{SOC=1}
0 0 1e-12
1 0 0.6
0 1 0.45
1 1 0.99

Table 3. Battery SOC. influenced by operational conditions
and flight profile.

Op. Cond Flight Prof. Pr{SOH=1}
0 0 1e-6
1 0 0.7
0 1 0.3
1 1 0.9

Table 4. Battery SOH. Influenced by operational conditions
and flight profile.

filtering and uncertainty propagation methods based on both
stochastic and interval analysis algorithms.

APPENDIX

We report the prior conditional probabilities utilized to pro-
duce the results in the paper. They are based on qualitative as-
sumptions by subject matter experts, are for illustration only
and should not be considered accurate.

The prior conditional probabilities of root causes: opera-
tional conditions, flight profile, internal chemical reactions,
and electro-thermal stress, were all set to a default value of
1e-6. Some of the root causes are easily observables (like
external temperature, or longer-than-expected flight profile),
and therefore their nodes can be set to True when observed.
Internal effects like chemical reactions and electro-thermal
stresses can only be inferred by the output of the network.
To illustrate the approach, we did not discuss likelihood of
these internal root causes that cannot be directly measured,
hence their prior probability was set to the default value. The
likelihood of occurrence of such unobservable root causes, as
well as intermediate faults and failures, depends on several
factors including design choices, manufacturing processes,
initial product defects, and precision of assembly. The prior
conditional probabilities of observable variables like voltage,
current and temperature depend on sensor properties like sen-
sitivity, accuracy, failure rates, and the thresholds set to define
”anomalies”, among others.

All tables shows only the probability of observing the node to
be True (1), since the probability of the node to be False (0)
is the complement to 1, Pr{X = 0}+ Pr{X = 1} = 1.

Op. Cond Flight Prof. Chem. Pr{TR=1}
0 0 0 1e-15
1 0 0 1e-3
0 1 0 1e-6
0 0 1 0.8
1 1 0 1e-3
1 0 1 0.9
0 1 1 0.85
1 1 1 0.95

Table 5. Battery thermal runaway. Influenced by operational
conditions, flight profile, and internal chemical reaction.

Op. Cond el. them. stress Pr{PWM=1}
0 0 1e-15
1 0 1e-3
0 1 0.05
1 1 0.1

Table 6. ESC PWM fault. Influenced by operational condi-
tions and electrical and thermal stresses.

Op. Cond ETS Pr{MOSFET=1}
0 0 1e-15
1 0 1e-2
0 1 0.1
1 1 0.2

Table 7. ESC MOSFET fault. Influenced by operational con-
ditions and electrical and thermal stresses (ETS).

Op. Cond Flight prof. Pr{B=1}
0 0 1e-6
1 0 1e-3
0 1 1e-5
1 1 0.01

Table 8. Motor bearing fault (B). Influenced by operational
conditions and flight profile.

Op. Cond Flight prof. Pr{W=1}
0 0 1e-15
1 0 1e-3
0 1 1e-2
1 1 0.1

Table 9. Motor winding resistance fault (W). Influenced by
operational conditions and flight profile.

SOC SOH M. Win. Pr{Vb=1}
0 0 0 1e-15
1 0 0 0.9
0 1 0 0.3
0 0 1 0.95
1 1 0 0.1
1 0 1 0.95
0 1 1 0.55
1 1 1 0.99

Table 10. Voltage readings at battery level. Influenced by
SOC, SOH, and motor winding fault.
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SOC, SOH, Bearing, TR, MOSFET Pr{Ib=1}
all ancestors False 1e-15
1 ancestor True 0.3
2 ancestors True 0.55
3 ancestors True 0.7
4 ancestors True 0.85
5 ancestors True 0.0.95

Table 11. Current readings at battery level. Influenced by 5
ancestors: SOC, SOH, motor bearing fault, thermal runaway
(TR) and MOSFET fault. The table would have 25 = 32
rows. We have made the simplifying assumption that the
probability of observing a current anomalous value depends
only on the number of active ancestors, rather than which in-
dividual ancestors is activated. By so doing, the prior condi-
tional probabilities to be defined falls from 2n to n + 1, 6 in
this case).

TR Pr{Tb=1}
0 1e-15
1 0.999

Table 12. Temperature readings at battery level. Caused by
thermal runaway (TR).

PWM MOSFET M. Wind. Pr{Ve=1}
0 0 0 1e-15
1 0 0 0.6
0 1 0 0.6
0 0 1 0.6
1 1 0 0.65
1 0 1 0.65
0 1 1 0.65
1 1 1 0.9

Table 13. Voltage readings at ESC level. Influenced by PWM
fault, MOSFET fault, and motor winding resistance.

MOSFET Bearing Pr{Ie=1}
0 0 1e-15
1 0 0.6
0 1 0.2
1 1 0.85

Table 14. Current readings at ESC level. Influenced by MOS-
FET fault and motor bearing fault.

MOSFET Pr{Te=1}
0 1e-15
1 0.9

Table 15. Temperature readings at ESC level. Caused by ESC
MOSFET fault.

PWM MOSFET M. Wind. Pr{Vm=1}
0 0 0 1e-3
1 0 0 0.85
0 1 0 0.87
0 0 1 0.89
1 1 0 0.9
1 0 1 0.93
0 1 1 0.95
1 1 1 0.999

Table 16. Voltage readings at motor level. Influenced by ESC
PWM and MOSFET faults, as well as motor winding resis-
tance.

MOSFET Bearing M. Wind. Pr{Im=1}
0 0 0 1e-12
1 0 0 0.8
0 1 0 0.85
0 0 1 0.85
1 1 0 0.9
1 0 1 0.92
0 1 1 0.92
1 1 1 0.99

Table 17. Current readings at motor level. Influenced by ESC
MOSFET fault, motor bearing fault and winding resistance.

Bearing M. wind. Pr{Tm=1}
0 0 1e-12
1 0 0.85
0 1 0.9
1 1 0.99

Table 18. Temperature readings at motor level. Influenced by
motor bearing fault and winding resistance.
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