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ABSTRACT

In this work, we attempt to address two practical limitations
when using Recurrent Neural Networks (RNNs) as classifiers
for fault detection using multi-sensor time series data: Firstly,
there is a need to understand the classification decisions of
RNNs. It is difficult for engineers to diagnose the faults when
multiple sensors are being monitored at once. The faults de-
tected by RNNs can be better understood if the sensors carry-
ing the faulty signature are known. To achieve this, we pro-
pose a sensor relevance scoring (SRS) approach that scores
each sensor based on its contribution to the classification de-
cision by leveraging the hidden layer activations of RNNs.
Secondly, lack of labeled training data due to infrequent faults
(or otherwise) makes it difficult to train RNNs in a super-
vised manner. We pre-train an RNN on large unlabeled data
via an autoencoder in an unsupervised manner, and then fine-
tune the RNN for the fault detection task using small amount
of labeled training data. Through experiments on a public
gasoil heating loop dataset and a proprietary pump dataset,
we demonstrate the efficacy of the proposed solutions, and
show that i) SRS can help point to the sensors relevant for a
fault, ii) large unlabeled data can be used to pre-train an RNN-
based fault detector in an unsupervised manner in sparsely-
labeled scenarios, and iii) a purely unsupervised approach for
fault detection (e.g. based on RNN-autoencoders) may not
suffice when the number of sensors being monitored is large
while the signature for fault is present in only a small subset
of sensors.

1. INTRODUCTION

With the advent of Industrial Internet of Things (IIOT) (Xu et
al., 2014), there is an increasing interest in remote monitor-
ing of equipment as large amounts of temporal sensor data
is available. Complex systems typically have hundreds of
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sensors installed across various components and sub-systems,
making manual monitoring infeasible. Machine learning
(ML) models can aid domain experts and engineers in moni-
toring data streams for: i) detecting events of interest such as
anomalies, faults or novel events from time series of sensor
readings as in Malhotra et al. (2015), and Malhotra, Ramakr-
ishnan, et al. (2016), ii) forecasting machine health degrada-
tion trends for estimating remaining useful life as shown in
Malhotra, TV, et al. (2016), and Gugulothu et al. (2017), and
iii) diagnosing the faults or finding faulty signatures from data
streams to aid root cause analysis as in Vishnu et al. (2017).

Building ML models for fault detection can help in real-time
monitoring of equipment as well as help explore historical
data effectively to help take key engineering decisions, e.g.
to improve future manufacturing processes. Recently, deep
recurrent neural networks (RNNs) based on gated units such
as Long Short Term Memory (LSTM) Networks (Hochreiter
& Schmidhuber, 1997) have been successfully used for mod-
eling behavior of machines based on multi-sensor time series
with applications to anomaly and fault detection (Malhotra et
al., 2015; Malhotra, Ramakrishnan, et al., 2016; Yadav et al.,
2016; Filonov et al., 2016).

In this work we highlight few practical challenges in using
RNNs for building fault detection models, and then propose
ways to address those challenges:

1.1. Limitations of RNNs-based Fault Detection Models

In this work, we note and attempt to address the following
challenges while using RNNs for multivariate (multi-sensor)
time series classification for fault detection with two classes
of interest: Normal and Faulty.
Limitation-I: RNN Classifiers cannot provide actionable in-
sights or explanations for their decisions. In fact, the reason
why a classifier method assigns a label to a data point can be
found in the mathematical analysis of the classifier, however,
it is not straightforward to identify which input (sensor) con-
tributes more to the label estimated by the classifier. There is

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

a need for explaining classification decisions (Lipton, 2016)
of an RNN to provide actionable insights to domain experts
and engineers.
Limitation-II: Lack of labeled training data. Despite having
access to large volumes of unlabeled data, rare occurrence of
faults implies not enough faulty data to train supervised mod-
els. An assumption that a machine exhibits normal behavior
during initial operational life is often used to circumvent this
issue by building models for normal behavior, for example
in (Malhotra, TV, et al., 2016; Gugulothu et al., 2017), and
then using any deviation from the modeled normal behavior
to detect faults. However, sensor data may not be available
(collected) for the initial life of a machine, for example,
owing to late adoption of IIOT Technology. Therefore, even
though large volumes of sensor data may be available, it
is difficult to extract data from regions where the machine
exhibited (almost) perfect behavior.

We also note that RNN autoencoder-based unsupervised ap-
proaches (Malhotra, Ramakrishnan, et al., 2016; Filonov et
al., 2016) are less effective when multiple sensors are being
monitored - especially when fault signature may be present
in only a small subset of sensors, and domain knowledge of
relevant sensors is not available.

1.2. Key contributions

If the number of sensors being monitored is large, a rele-
vance score for each sensor can guide engineers to look at the
subsystems corresponding to most relevant sensors closely -
rather than going through readings of each sensor one-by-one
to find the signature for the fault. We propose an approach for
sensor relevance scoring that provides useful insights to un-
derstand a given classification decision. Our SRS approach
represents a multivariate time series by the final hidden layer
activations of RNNs similar to Malhotra et al. (2017) and
Gugulothu et al. (2017). These representations are used to
understand which input sensors discriminate the ‘similar’ in-
stances belonging to different classes around a test time series
of interest (refer Section 5.2 for details). This can help a do-
main expert to quickly validate and interpret the results of the
RNN Classifier to address Limitation-I. The output of SRS
is a relevance score for each input sensor so that higher score
for a sensor implies higher likelihood of presence of fault sig-
nature in that sensor.

Our approach for building RNN classifiers first leverages
large amounts of unlabeled sensor data via unsupervised
pre-training of the RNN (Dai & Le, 2015) to overcome
Limitation-II as described in Sections 4 and 5.1. We ob-
serve that a semi-supervised approach can improve the per-
formance of unsupervised fault detection by fine-tuning the
RNN through a small amount of labeled seed data. Such an

approach also saves labeling costs and aids domain experts in
preparing labeled datasets for further analysis.

1.3. Organization of paper

The rest of the paper is organized as follows: In Section 2,
we introduce notation and describe the tasks of RNN Classi-
fication via semi-supervised learning, and formulate the prob-
lem of sensor relevance scoring. We provide a summary
of the related literature in Section 3. Section 4 provides a
brief overview of RNN-based sequence-to-sequence learn-
ing framework which we use for unsupervised pre-training
of RNN Classifiers as described in Section 5.1, followed by
the description of SRS in Section 5.2. We provide empirical
evaluation and observations of the proposed approach on a
pump dataset and a gasoil heating loop dataset in Section 6,
and conclude in Section 7.

2. PROBLEM FORMULATION

Consider a learning set D = {x(i), c(i)}ni=1 of n time se-
ries instances, where each x(i) = x

(i)
1 . . .x

(i)
T is a multi-

variate time series with x
(i)
t ∈ Rp for t = 1 . . . T , with

p being the number of sensors, and c(i) ∈ {c1, . . . , cK}
(e.g., c1=Normal, c2=Faulty for K = 2) is one of the K la-
bels/classes such that the corresponding target for the clas-
sification task is a one-hot vector of length K given by
y(i) = [y

(i)
1 , y

(i)
2 , . . . , y

(i)
K ] ∈ {0, 1}K . We denote the set

of sensors by S = {s1, s2, . . . , sp}.

We consider the scenario of sparsely-labeled data, i.e. labels
are available only for a few instances inD. Let L ⊂ D denote
the set of labeled instances, i.e. instances for which y(i) is
known, and U ⊂ D denote the set of unlabeled instances, i.e.
instances for which y(i) is unknown. Note thatD can contain
time series from multiple instances/installations belonging to
multiple models (e.g. based on manufacturing year, OEM,
etc.) of an equipment.

Our goals are two-fold:

• Semi-supervised RNN classifier learning: The goal is to
leverage the unlabeled instances in U and the labeled in-
stances in L to learn an RNN classifier fC .

• Computing Sensor Relevance Scores: Given a learned
classifier fC and an estimate ĉ(i) for actual class c(i), the
goal of SRS is to provide relevance scores for the sensors
in S, such that, the sensor that has the most discrimina-
tive information to predict ĉ(i) via fC gets the highest
relevance score.

3. RELATED WORK

Fault detection using RNNs: RNNs are used for fault detec-
tion in de Bruin et al. (2017), Ping Zhao & Khorasani (2007),
and Wang et al. (2009). Approaches such as LSTM-AD (Mal-
hotra et al., 2015) and EncDec-AD (Malhotra, Ramakrish-
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nan, et al., 2016; Filonov et al., 2016) can be used for fault
detection using RNNs but rely on the knowledge of normal
operating regions making them less effective when such an
information is not available. In this work, we extend such un-
supervised approaches to the scenario where a small amount
of labeled data is available to improve fault classification.

Semi-supervised time series classification using unsupervised
pre-training: Semi-supervised approaches for sequence clas-
sification in text domain using RNN autoencoders has been
explored in Dai & Le (2015). Ergen et al. (2017) proposed
semi-supervised anomaly detection where fixed length se-
quences are obtained for variable length sequences by passing
through an RNN and then support vector machines is used to
classify the sequences. Semi-supervised approaches are used
for fault detection in Zhao et al. (2015), Isermann (2005),
Monroy et al. (2010), and Jiang et al. (2013), but none of
these approaches are for time series. Other semi-supervised
approaches using non-temporal models such as Deep Belief
Nets (Wulsin et al., 2010) have been used for EEG time se-
ries anomaly detection. We have explored similar approach
of unsupervised pre-training followed by supervised training
on smaller data. To the best of our knowledge, this is the first
attempt to adopt such an approach for fault detection from
sensor data using RNN autoencoders.

Using hidden layer activations for time series representation:
Recent approaches such as Malhotra et al. (2017), and Gugu-
lothu et al. (2017) suggest that hidden layer activations of an
RNN encoder can be used for learning robust time series rep-
resentations. For example, Malhotra et al. (2017) use hidden
layer activations of RNNs to represent time series for classi-
fication task. In this work, we leverage the representations
based on hidden layer activations for explaining the classi-
fication decisions of the RNN classifier, making it different
from such approaches.

Interpretable machine learning models: Explainability and
interpretability of complex machine learning models, espe-
cially deep learning models, is an open research problem
(Lipton, 2016). The idea of using local gradients to predict
the classifier label for a data point was explored in Baehrens
et al. (2010). LIME (Ribeiro et al., 2016) learns simpler mod-
els around an instance of interest in the representation space
that is human-interpretable. Recently, Ribeiro et al. (2018)
proposed a model that explains the behavior of complex mod-
els with high-precision rules called anchors, representing lo-
cal, sufficient conditions for predictions. As detailed in Sec-
tion 5.2, our work is similar to LIME (Ribeiro et al., 2016)
and Vishnu et al. (2017) in the sense that it attempts to build
locally interpretable simplified models. Our approach can be
seen as an extension of Vishnu et al. (2017), which was pro-
posed to understand the anomaly scores. In our approach,
we explain RNN Classifiers by using the idea of represent-
ing time series via hidden state activations instead of rely-

ing only on the RNN predictions to find neighborhood. A
neighborhood defined using hidden state activations is likely
to better capture the relevant discriminating properties of time
series compared to a neighborhood defined using occurrence
in time, and provide more robust explanations. Further, it
is not obvious how a LIME-like approach to explore neigh-
borhood of a test instance can be used to explain multivariate
time series classification models. Our approach tries to bridge
this gap by using hidden state activations to define neighbor-
hood and then use it to obtain sensor relevance scores via a
Bayesian Network (BN).

4. BACKGROUND: RNN BASED ENCODER-DECODER

We provide a brief introduction to sequence-to-sequence
(seq2seq) learning framework consisting of RNN-based en-
coder and decoder pair (Sutskever et al., 2014; Bahdanau et
al., 2014). In general, a seq2seq model consists of a pair of
multilayered RNNs – an encoder RNN and a decoder RNN –
trained together. Let x1...T denote a sequence x1,x2, ...,xT

of length T where each xt ∈ Rp. A seq2seq model is
trained to learn a mapping from input sequences of the form
i = x1...T to output sequences of the form o = y1...T ′ . The
encoder ingests the input sequence i and maps it to a fixed
dimensional representation zT through a function fe. The
decoder uses zT to generate an estimate for the output se-
quence o through a function fd. A multilayered encoder with
L hidden layers, having recurrent units, iterates through the
points in i. At time t, the encoder uses the current input xt

and the previous hidden state zt−1 to compute the current hid-
den state zt (through a sequence of operations as described in
Appendix A.1). The final hidden state zT is given by the
concatenation of the hidden state vectors from all the lay-
ers in the encoder, s.t. zT = [zT,1, zT,2, . . . , zT,L], where
zT,l is the hidden state vector for the lth layer of encoder.
The total number of recurrent units in the encoder is given by
c =

∑L
l=1 c

l, s.t. zt ∈ Rc, where cl is the number of units
in lth layer. The decoder has the same network structure as
the encoder, and uses the hidden state zT as its initial hidden
state, and iteratively goes through a set of transformations to
generate ô as an estimate for o. We provide details of how we
use seq2seq for unsupervised pre-training of RNN Classifier
in our context in Section 5.1.
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Figure 1. Inference using RNN Encoder-Decoder pair for a
toy time series x1x2x3.
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Figure 2. Sensor Relevance Scoring Approach. Here, Red: ‘Faulty’ predictions, Green: ‘Normal’ predictions

5. FAULT DETECTION AND SRS

We consider an RNN classifier trained in a semi-supervised
manner through a small labeled (L) and a large unlabeled (U)
set for building the fault detection model. We use reconstruc-
tion task for RNN autoencoder to incorporate unlabeled data
in the standard supervised learning framework. We then pro-
vide details of how to get further insights into the decisions
of the RNN classifier through SRS approach.

5.1. Semi-supervised RNN classifier learning

We first use instances in D = L ∪ U (without the label infor-
mation for instances in L) to train RNN Encoder-Decoder
(RNN-ED) in an unsupervised manner using reconstruc-
tion error as loss (refer Equation 1) to obtain the parameters
We of the encoder function fe. This unsupervised approach
to train an RNN encoder using large amount of unlabeled data
is used to obtain a robust model capturing the statistical prop-
erties of data. We train the RNN-ED in a manner that output
time series o = xT ...1 is in reverse order to the input time
series i = x1...T (similar to Gugulothu et al. (2017)). Fig-
ure 1 provides inference flow of RNN-ED for a sample time
series x1x2x3. The overall process can be thought of as a
non-linear mapping of the input multivariate time series to a
fixed-dimensional vector representation (embedding) via an
encoder function fe, followed by another non-linear mapping
of the fixed-dimensional vector to a multivariate time series
via a decoder function fd:

z
(i)
T = fe(x

(i);We)

x̂(i) = fd(z
(i)
T ;Wd)

e
(i)
t = x

(i)
t − x̂

(i)
t , t = 1, . . . , T

C1(x̂
(i),x(i)) =

1

T

T∑
t=1

‖ e(i)t ‖22

(1)

where, We and Wd represent the parameters of the encoder
and decoder, respectively, and ‖ . ‖2 denotes the L2-norm.
The RNN-ED is trained to minimize the loss function given

by the squared reconstruction error
∑n

i=1 C1(x̂
(i),x(i)).

(Note: As mentioned in Equation 1, the decoder takes z
(i)
T

as the only input. This ensures that all the relevant informa-
tion in the time series is captured by the encoder as shown in
Malhotra et al. (2017) and Gugulothu et al. (2017).

Initialize RNN Classifier using We and tune classifier us-
ing labeled set L: Since the RNN-ED is already trained to
reconstruct the time series, and therefore, capture the relevant
information in the final hidden state of the RNN Encoder, it
is a reasonable choice for initialization of the weights of the
RNN Classifier as demonstrated in our experiments in Sec-
tion 6.

The weights We of the encoder are used to initialize a super-
vised RNN Classifier. The RNN Classifier with parameters
We from the encoder and parameters Wc connecting the en-
coder state z(i)T,L at last time-step T with a softmax layer with
K units, are then trained together by minimizing the cross-
entropy loss given by C2:

ŷ(i) = softmax(Wc z
(i)
T,L + b)

C2(ŷ
(i),y(i)) = −

K∑
k=1

y
(i)
k · log(ŷ

(i)
k )

(2)

The final model is obtained via stochastic gradient de-
scent based training of the neural network to minimize∑m

i=1 C2(ŷ
(i),y(i)), where m is the number of labeled in-

stances in L (m << n in our experiments). For the binary
classification task, we have K = 2 corresponding to “Nor-
mal” and “Faulty” classes. The same approach can be ex-
tended to fault diagnostics where K would refer to the num-
ber of fault types with K > 2 (with one Normal class and
K − 1 fault modes).

5.2. Sensor Relevance Scoring Approach

We propose Sensor Relevance Scoring (SRS) algorithm to
provide insights into the predictions of the fault detection
model (summarized in Algorithm 1 and illustrated in Figure
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2). SRS provides relevance scores for the input sensors in S
by using hidden layer activation z

(i)
T,L to represent the input

x(i). We define the neighborhood of test instance i based on
similarity of its representation z

(i)
T,L to the representations of

other instances in L. A Bayesian Network (BN) is then used
to obtain the sensor relevance scores as we describe next.

Algorithm 1: Sensor Relevance Scoring

Require: x(i), ĉ(i), z
(i)
T,L, Z, L;

1: Get L(i)
+ ⊂ Z as N nearest neighbors of z(i)T,L with

estimated class ĉ(i);
2: Get L(i)

− ⊂ Z as N nearest neighbors of z(i)T,L with
estimated class 6= ĉ(i) ;

3: Estimate P (S,C) using L(i)
+ , L(i)

− , and x(i);
4: For sj in S;

Compute P (Sj |C = ĉ(i)) and P (Sj |C 6= ĉ(i));
Compute R(sj) using Equation 3;

5.2.1. Finding neighborhood based on time series repre-
sentation

Let Z denote the set of representations for the time series in
L, and let d(z1, z2) denote the metric computing the distance
between two representations (e.g. Euclidean distance). Con-
sider L(i)

+ ⊂ L to be the set of N time series whose rep-
resentations are closest to z

(i)
T,L according to the metric d,

and for which the estimated class is same as ĉ(i). Also, let
L(i)
− ⊂ L denote the set of N time series whose representa-

tions are closest to z
(i)
T,L based on the metric d but for which

the estimated class is different from ĉ(i).

5.2.2. Computing Sensor Relevance Scores using
Bayesian Network

Consider a categorical random variable C corresponding to
the estimated class, and a set of p discrete random vari-
ables S = {S1, S2, ..., Sp} corresponding to the p sen-
sors. We model the dependence between S and C via a
BN with p + 1 nodes. The network models the joint distri-
bution P (S1, S2, ..., Sp, C) for the set of random variables
X = {S1, S2, ..., Sp, C}. (Since we are only interested in
modeling the dependence between each sensor and the pre-
dicted class, a naive Bayes model with C being the parent
node and Sjs being children can be assumed as shown in Fig-
ure 3. Wherever possible, a network structure can be assumed
based on domain knowledge of the sensors dependencies.)
The parameters of the BN, i.e. the conditional probability ta-
bles, are learned using the values the sensors take from all the
time series instances in L(i)

+ ∪ L
(i)
− ∪ {x(i)}.

A random variable Sj ∈ S is considered to have k possi-

  

S
1

S
2 S

p

C

. . .

Figure 3. Bayesian Network considered to compute Sensor
Relevance Scores.

ble outcomes [b1i , b
2
i , ..., b

k
i ] corresponding to k discretized

bins for the range of values the variable can take. A p-
dimensional vector of sensors x′

(i)
t at time t in time series

instance x′
(i) ∈ L(i)

+ ∪ L
(i)
− ∪ {x(i)} yields one observation

for the set of random variables S = {S1, S2, ..., Sp}. The
marginal probability distribution for Sj is given by P (Sj)
and the conditional probability distribution for Sj , given an
estimated class C = ĉ(i) is given by P (Sj |C = ĉ(i)). The
change in the distribution of the random variable Sj condi-
tioned on C is used to quantify the effect of the jth sensor
on the estimated class, and to obtain its relevance score. We
quantify this change in terms of a relevance score R given by:

R(sj) = DH(P (Sj |C = ĉ(i)), P (Sj |C 6= ĉ(i))) (3)

where DH(P,Q) is a metric that quantifies the difference
between two probability distributions P and Q. We com-
pute DH(P,Q) based on Euclidean Distance, Hellinger Dis-
tance (Equation 7) and Earth Mover’s Distance (Equation 8).
Higher the value for R(sj), higher is the effect of sensor sj
on the estimated class.

6. EXPERIMENTAL EVALUATION

We use two multi-sensor time series datasets (Table 1) for
our experiments: i) GHL: a publicly available Gasoil Heating
Loop dataset (Filonov et al., 2016), ii) Pump: a proprietary
real-world pump data.

GHL dataset contains data from 14 sensors1 capturing op-
erational behavior of a Gasoil Heating Loop (GHL) Sys-
tem. There are two types of faults; one of the sensors
(RT level) is relevant for detecting 24 faults while another
sensor (HT temperature.T) is relevant for detecting remain-
ing 24 faults (refer Fig. 4(a)). Pump dataset contains data
from 5 sensors where the signature for fault can be captured
by considering at least two of the most relevant sensors (re-
ferred to as S1 and S2 here) as the temporal correlation be-
tween them goes off during faulty operation (refer Fig. 4(b)).
We provide more details on the datasets in Appendix A.3.

1Based on electronic communication with authors of (Filonov et al., 2016),
GHL dataset contains data from 19 sensors, but 5 of those sensors are aux-
iliary sensors used to add random noise to the values of remaining sensors.
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Figure 4. Sample results using EDC on subsequences with faults.

Table 1. Datasets description: Instance level statistics. Here
T: window length, p: number of sensors, n: number of

windows.

Dataset T p #Faults n

GHL 100 19 48 56,750
Pump 48 5 28 21,742

Table 2. Datasets description: Window-level statistics (T:
Train Set, V: Validation Set, Te: Test Set)

Dataset #instances #windows (n)
T V Te TN TF VN VF TeN TeF

GHL 22 10 16 26331 161 13809 89 16278 82
Pump 13 5 10 11130 102 3100 29 7312 69

6.1. Semi-supervised Classification

We compare following three models for the binary classifica-
tion task of fault detection (Normal vs Faulty classification):

• unsupervised RNN Encoder-Decoder (ED) where recon-
struction error is used as score for faulty behavior (simi-
lar to Malhotra, Ramakrishnan, et al. (2016), and Filonov
et al. (2016))

• a purely supervised approach based on RNN Classifier
(C)

• a semi-supervised RNN classifier (EDC) as described in
Section 5.1.

To compare the significance of domain knowledge for unsu-
pervised and supervised models, we consider variants S-ED
and S-EDC for ED and EDC, respectively, where only the
relevant sensors are used for learning the models.

We split the data into train, validation and test sets (Table 2).
To evaluate the effectiveness of pre-training to help deal with

small labeled set, we consider two scenarios: i) with large
labeled train dataset (22 and 13 fault instances for GHL and
Pump datasets, respectively, as shown in Table 2), ii) with
only 25% of the large labeled train dataset (5 and 4 fault in-
stances for GHL and Pump datasets, respectively). We con-
sider the subset of large labeled train set to arrive at the small
labeled set, while the test set remain same for both the scenar-
ios. We consider fixed-length overlapping windows as time-
series instances from one large sequence.

We use early stopping and dropout (Zaremba et al., 2014)
with a value of 0.2 over the feedforward connections for reg-
ularization, and use Adam optimizer (Kingma & Ba, 2014)
for optimizing the weights of the networks with initial learn-
ing rate of 0.0005 for all our experiments. Since the datasets
are highly imbalanced with large number of normal windows
and very few faulty windows (Table 2), we use minority class
over-sampling in each mini-batch of size 128 (ensuring at
least 4 instances from faulty class in each mini-batch). We
chose the best architecture (via grid search on number of lay-
ers (L) and number of hidden units per layer) as the one with
maximum AUROC for supervised and semi-supervised mod-
els, and the one with least reconstruction error for unsuper-
vised models on the validation set.

We make the following key observations from the results in
Table 3:

• C7 vs C6: Fine-tuning an unsupervised model for the
classification task using small labeled data outperforms a
purely supervised model trained using small labeled data.

• C6 vs C1: Little labeling effort to generate small la-
beled set to train supervised or semi-supervised mod-
els can significantly improve classification performance
compared to purely unsupervised approaches.
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Table 3. Comparison of Fault Detection Models: Supervised (C), Unsupervised (ED), Semi-supervised (EDC), approaches in
terms of AUROC. Here, R.S.: Relevant sensor(s), A.S.: All Sensors.

Unlabeled data All labeled data Small labeled data
C1 C2 C3 C4 C5 C6 C7

Dataset ED S-ED S-EDC C EDC C EDC
(A.S.) (R.S.) (R.S.) (A.S.) (A.S.) (A.S.) (A.S.)

GHL 0.582 0.779 0.991 0.979 0.981 0.776 0.958
Pump 0.805 0.868 0.959 0.964 0.969 0.937 0.965

• C7 vs C2: Fine-tuning an unsupervised model for the
classification task using small amount of labeled data
can yield significant improvement in classification per-
formance over an unsupervised model, even when the
knowledge of sensors containing the faulty signatures is
not available.

• C7 vs C4: Unsupervised pre-training using large unla-
beled data can lead to robust time series encoders that
need small amount of supervision via a small labeled set
to achieve performance comparable to purely supervised
models trained on large labeled datasets. This can be
very useful in practical settings to save labeling effort.

• C3 vs C5: Semi-supervised models trained using raw
sensors without any knowledge of relevant sensors per-
form comparable to semi-supervised models built us-
ing only the relevant sensors, suggesting that semi-
supervised models are robust.

• C2 vsC1: We observe that S-ED performs better than ED
suggesting that when numbers of sensors is large (e.g. 14
in GHL), an unsupervised approach for fault detection
may not be able to capture the weak information from
relevant sensors especially when the signature is present
in only a few sensors (e.g. 1 in GHL).

6.2. SRS Evaluation

We consider the EDC classification models (Column C5 in
Table 3) for evaluating sensor relevance scoring approach.
We evaluate our sensor relevance scoring algorithm using Re-
call@K metric: we choose the threshold over the estimates
ŷ for the ‘Faulty’ class for which F1-score is maximum on
the validation set. We consider the instances for which ĉ
is ‘Faulty’. Then, for each ‘Faulty’ prediction, we find its
neighbors (based on Euclidean distance as described in Sec-
tion 5.2.1) from ‘Normal’ and ‘Faulty’ predictions in the train
set. Then, we calculate the relevance scores for all the sen-
sors for this prediction. The sensor relevance scoring for an
instance is considered to be ‘Correct’ when the “actual” most
relevant sensor is present in the set of “estimated” top-K rel-
evant sensors (in descending order of sensor relevance score)
as given by the SRS algorithm. Therefore, the metric Re-
call@K denotes the fraction of ‘Faulty’ test predictions for
which the actual most relevant sensor is present in the set of
estimated top-K relevant sensors.

6.2.1. Observations

Figure 5 shows the performance of the SRS algorithm for
various values of N (number of nearest neighbors) and the
three histogram distance metrics considered. We observe that
relevance scores based on Hellinger Distance yield the best
performance in terms of Recall@K for both datasets. For
GHL, we get a Recall@3 of 0.99 when 40 nearest neigh-
bors are considered, implying that while scoring the 14 sen-
sors considered, the actual most relevant sensor is almost al-
ways present in the estimated top-3 sensors. Similarly, for the
Pump dataset, we get a Recall@3 of 0.98 when 20 nearest
neighbors are considered, implying that out of the 5 sensors
considered, the actual most relevant two sensors are almost
always present in the top-3 estimated relevant sensors.

Sample histograms for the top-scored and the bottom-scored
sensors for the two datasets are shown in Figure 6, indicating
a large difference in distribution of values taken by top-scored
sensors for ‘Normal’ and ‘Faulty’ classes, while very similar
distribution of values taken by bottom-scored sensors. This
suggests that exploring the neighborhood of a ‘Faulty’ test
instance through the final hidden layer outputs, can help un-
derstand the behavior of classifier. For a time series classified
as faulty, sensor relevance score obtained based on the final
hidden state of the RNN Classifier can be used to pin-point
the sensors that are likely to have captured the information
relevant for arriving at the decision. Such a system (along
with histogram comparison visualization) can be used to aid
the domain experts or remote monitoring engineers to easily
check the relevant sensors to understand the fault and/or de-
cide on the accuracy of the classification decision.

7. DISCUSSION

We highlight practical considerations for building fault detec-
tion systems and address challenges such as lack of labeled
data and lack of interpretability of fault detection results. We
propose a novel approach for obtaining relevance scores of in-
put sensors to provide actionable insights into the results of a
fault detection model based on RNN Classifier. Our approach
for interpreting RNN predictions is generic and may be useful
in other applications involving multivariate time series classi-
fication. Further, we observe that semi-supervised classifica-
tion using pre-trained RNN autoencoders can provide signif-
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Figure 5. Recall@K for GHL (a-c) and Pump (d-f) datasets. Total number of sensors (p): GHL=14, Pump=5. Number of
relevant sensors: GHL=1, Pump=2.
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(d) C level (14, 0.0)
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(e) S2 (1, 0.221)
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(f) S1 (2, 0.093)
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(g) S5 (4, 0.060)
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Figure 6. Sample histograms (GHL (a-d) and Pump (e-h)) comparing distribution of sensor values for most relevant and least
relevant sensors for Normal and Faulty predictions. (x, y) in a sub-caption denotes relevance rank (x) and relevance score (y)
for the sensor.
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icant performance improvements in time series classification
tasks, especially when data is sparsely labeled. The proposed
approach to interpret RNN-classifier results is restricted to
finding the most relevant sensors. In future, it would be inter-
esting and useful to see how to highlight the relevant regions
of a multivariate time series to further improve interpretabil-
ity. Also, it may be interesting to see how a combination of
classifier predictions and the insights from sensor relevance
scoring can be used to improve the semi-supervised approach
(Wei & Keogh, 2006) in an active learning setting. Further,
an extension to the proposed approach to address the usu-
ally encountered non-stationarity, as addressed in Saurav et
al. (2018), can be considered.
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A. APPENDIX

A.1. Long Short Term Memory Unit
We use a variant of LSTMs (Hochreiter & Schmidhuber,
1997) as described in (Zaremba et al., 2014). Consider
Tn1,n2

: Rn1 → Rn2 is an affine transform of the form
z 7→ Wz + b for matrix W and vector b of appropriate
dimensions. The values for input gate i, forget gate f , output
gate o, hidden state z, and cell activation c at time t are com-
puted using the current input xt, the previous hidden state
zt−1, and memory cell value ct−1 as given by Eqs. 4-6.

it
ft
ot

gt

 =


σ

σ

σ

tanh

Tm+n,4n

(
xt

zt−1

)
(4)

ct = ftct−1 + itgt (5)
zt = ottanh(ct) (6)

A.2. Distance Metrics Considered
For two discrete probability distributions P =
(p1, p2, ..., pK) and Q = (q1, q2, ..., qK), Hellinger distance

is defined as:

H(P,Q) =
1√
2

K∑
i=1

(
√
pi −

√
qi)

2 (7)

Earth Mover’s Distance (EMD) is defined as:

EMD0 = 0
EMDi = pi + EMDi−1 − qi

EMD(P,Q) =
∑K

i=1 |EMDi|
(8)

A.3. Datasets Details
GHL
GHL dataset (Filonov et al., 2016) contains data for faulty
behavior (due to cyber-attacks) in a plant induced by chang-
ing the control logic of a gasoil plant heating loop. There are
two types of faults in this dataset: i) unauthorized change of
max RT level, (Fault IDs 1-24), ii) unauthorized change of
max HT temperature (Fault IDs 25-48). If a sensor reading
crosses a pre-defined threshold after an attack, then Danger
sensor is set to 1. We use this sensor as ground truth for our
experiments (1:Faulty, 0:Normal). We down-sample the orig-
inal time-series by 4 using 4-point average, and then take a
window of 100 points to generate time-series instances.

Pump
This is a proprietary real-world dataset with per-minute sen-
sor readings over a period of two years for 28 pumps that
have failed due to a particular fault. The data for most pumps
is not available for entire life but only from mid-operational
life. So that unsupervised models (ED) such as (Malhotra,
Ramakrishnan, et al., 2016) are difficult to train as knowledge
of normal operating region is not known. We downsample the
time series data from the original one reading per minute to
one reading per hour using one-hour average and then take
a window of 48 hours to generate time-series instances, s.t.
window-length T = 48. The dataset has five sensors while
the signature for the fault is present in two of them.
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