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ABSTRACT

The regulation of functions such as respiratory or heart rate
in human body as well as the control of motor movements
are under the control of nervous system. As these actions
and correlated tasks are directly influenced by the brain,
the brain monitoring gives the possibility to differentiate the
tasks, enabling at the same time the prediction of further
actions. In this contribution, publicly available electroen-
cephalography (EEG) datasets are analyzed with respect to
the detection of epileptic seizure occurrence and BCI-related
actions (here: cued motor imagery). For these purposes, time-
frequency-based feature extraction alongside different classi-
fication methods is used. To perform the classification, Ar-
tificial Neural Network (ANN) and Support Vector Machine
(SVM) are utilized and compared with previously obtained
results. The feasibility of particular features for the detection
of epileptic seizures and BCI-related tasks is discussed. Four
different feature vectors per analyzed problem are identified.
Acceptable accuracy of classification using ANN- and SVM-
based classifiers is achieved using identified feature vectors.

1. INTRODUCTION

The reactions of humans to the stress, occurred under the in-
fluence of a number of external or internal stimuli, is vari-
able. As these reactions have direct impact on the brain and
the heart, the brain and the heart monitoring gives the possi-
bility to detect particular states and changes in human body.
Accordingly, it can be stated that the signals most exten-
sively used for an inspection of human body are the signals
obtained from the brain and the heart: Electroencephalog-
raphy (EEG), magnetoencephalography, and electrocardiog-
raphy (ECG) signals. The abnormalities noticed in EEG or
ECG signal are the indicators of disorders within the organ-
ism. The EEG is used in a number of cases, from the diag-
nosis of epilepsy, sleep disorders, coma, brain death, to the
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diagnosis of encephalopathies, tumors, or lesions (Diykh, Li,
& Wen, 2017; Schirrmeister et al., 2017). These signals are
captured using a number of electrodes on the scalp and are
correlated to the electrical activity of the brain. Beside most
common use and well investigated application of EEG signals
for the detection of epilepsy, the analysis of EEG signals is
widely utilized in the development of Brain Computer Inter-
face (BCI) systems. The BCI systems are capable to generate
control signal, in most cases electric signal to be transmitted
to the electric device, in accordance to current brain activity.
Control signal in form of predefined command is thus gener-
ated based on recognition of a priori known activity patterns
in EEG signals.

The analysis of EEG signal is performed in two steps: i)
an identification of characteristic feature vector, related to
epileptic seizure occurrence or particular BCI-related action,
and ii) the correlation of extracted features to particular EEG
pattern. The main focus of this contribution is comparison of
feature vectors extracted from EEG signal by terms of the de-
tection of epileptic seizure diagnosis and motor imagery BCI
task. Continuous monitoring of EEG signal is mostly utilized
for epileptic seizure detection, whereas BCI systems design
include analysis of specific cases with respect to external or
internal stimuli (Ghaemi, Rashedi, Pourrahimi, Kamandar, &
Rahdari, 2017; Ramadan & Vasilakos, 2017).

The contribution is organized as follows: i) after introduc-
tory part stating the problem of interest, the state-of-art in
EEG signal analysis including commonly used feature ex-
traction/selection and classification approaches is discussed
in the second section, ii) afterwards, publicly available exper-
imental data sets and used approaches are introduced in the
third section, iii) whilst the obtained results are discussed in
the fourth section. At last, the contribution closes with the
conclusion and outlook.

2. FEATURE EXTRACTION AND CLASSIFICATION

Concerning time-varying non-stationary nature of EEG sig-
nal, a variety of characteristic signal signatures can be calcu-
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lated and used for classification and pattern recognition pur-
poses. From other point of view, not all calculated signal sig-
natures show the same feasibility for efficient classification
and pattern recognition analysis (Sharma, Dhere, Pachori, &
Acharya, 2017). In practice, the utilization of feature vectors
(group of features) instead of single feature gives more pre-
cise results. This implies that the analysis of individual fea-
tures can be useful for decision making on feature inclusion
or exclusion within feature vector. Even more important is to
emphasize that the number of EEG channels, corresponding
to electrodes localized in parietal, occipital, frontal, central,
and temporal region of brain, is not equal to one (Ghaemi et
al., 2017); implicitly, the feature itself can either be corre-
lated to individual channel or to many of channels. In such
cases, a multivariate analysis has to be done to obtain useful
information from a number of EEG channels.

The EEG signal is a signal of low amplitude and low Signal-
to-Noise Ratio (SNR). Consequently, the amplification as
well as the filtering of data is necessary to increase SNR ra-
tio regardless of features intended to be used for classifica-
tion (Ghaemi et al., 2017). In accordance with the above dis-
cussion, the EEG signal primarily has to be amplified and
filtered, as depicted in Figure 1. Likewise, the removal of
undesirable artifacts is considered within this step.

Alongside EEG amplification, filtering, and artifacts re-
moval, completely different approach is applied in the anal-
ysis of Event-Related Potentials (ERPs) (Haider & Fazel-
Rezai, 2017). The ERP and its components are a kind of
stimulated (evoked) potentials by external or internal stim-
uli, whereas the EEG measurements correspond to a specific
cognitive or motor event (movement of hand, recognition of
shapes inside figure, and similar). The differentiation of ERP-
related response from captured EEG signal can hardly be ob-
tained from single measurement (trial). Many trials are thus
conducted, analyzed simultaneously, and averaged to obtain
ERP-related response to a stimulus (Haider & Fazel-Rezai,
2017).

2.1. Identification of EEG features

Component analysis, namely Principal Component Analysis
(PCA), Independent Component Analysis (ICA), and Lin-
ear Discriminant Analysis (LDA), are applied to reduce the
amount of data, to decompose a signal into a number of inde-
pendent signals, or to extract the artifacts from EEG signal.
Reduction of high-dimensional to a low-dimensional data is
mostly done using PCA and LDA, whereas ICA is princi-
pally utilized for artifacts removal through signal decomposi-
tion into a number of linearly independent signals (Acharya,
Oh, Hagiwara, Tan, & Adeli, 2017). Alongside LDA, PCA,
and ICA, Common Spatial Pattern (CSP) technique with a
number of variations is extensively applied to EEG signal to
separate multivariate signal in a number of linearly indepen-

dent subcomponents (Park, Lee, & Lee, 2018; D. Li, Zhang,
Khan, & Mi, 2018; Meisheri, Ramrao, & Mitra, 2018). Such
transformation of the signal tends to reduce high-dimensional
into low-dimensional data by maximization of variance be-
tween the data, enabling therefore selection of features which
reflects the case of interest. The CSP is proven to be highly
efficient for BCI-related tasks. The method is highly sensi-
tive to outliers, setting thereby high requirements to signal
preprocessing (Meisheri et al., 2018).

To reveal characteristic frequencies or power spectral den-
sity, the techniques such as Fourier Transform (FT) or Dis-
crete/Continuous Wavelet Transform (DWT/CWT) can be
applied. As EEG signal has highly dynamic nature, the
information about the time is of crucial importance. The
DWT and CWT are most commonly used to reveal frequency
spectrum of EEG signal without losing an information about
the time and to calculate its relevant statistical characteris-
tics (Bhattacharyya, Pachori, Upadhyay, & Acharya, 2017).
Additionally, high- and low-frequency components can be
analyzed individually by application of Wavelet Packet De-
composition (WPD), decomposing obtained signal into two
components (Alickovic, Kevric, & Subasi, 2018). Alongside
CWT and DWT, Empirical Mode Decomposition (EMD) as
well as Hilbert-Huang Transform (HHT) are applied to non-
stationary, non-linear EEG signal (Mutlu, 2018; Krishnan &
Samiappan, 2018; Ramakrishnan & Kanagaraj, 2018; Das &
Bhuiyan, 2016). Among numerous practical application of
EMD on EEG signal, the inceptive application is found in
removal of noise as well as some artifacts from EEG sig-
nal (Das & Bhuiyan, 2016). Using EMD, the signal is de-
composed in a number of Intrinsic Mode Functions (IMFs),
whereas each IMF has the same number of zero crossings
and envelopes symmetric with respect to zero. Revealed in-
trinsic modes of oscillations are closely related to instanta-
neous frequency; precisely, localized frequency within nar-
row frequency band (Krishnan & Samiappan, 2018). Sta-
tistical analysis of EMD related signatures is often applied
by means of particular dysfunction diagnose (for instance:
epileptic seizures) (Ramakrishnan & Kanagaraj, 2018; Das &
Bhuiyan, 2016). Hilbert-Huang Transform is commonly dis-
cussed in terms of EMD extension as it uses IMFs to obtain
Hilbert spectrum. As such, revealing IMFs is the first step
in HHT calculation. Hilbert spectrum is three-dimensional
representation of the amplitude, the time, and instantaneous
frequency of the signal. According to (Mutlu, 2018; Krishnan
& Samiappan, 2018; Ramakrishnan & Kanagaraj, 2018), the
Hilbert-Huang spectral analysis and its components such as
marginal spectrum, mean marginal spectrum, degree of statis-
tic stationarity, and similar are utilized for the detection of
particular dysfunctions and abnormal EEG signatures.

To provide more detailed representation of information con-
veyed by EEG signal, a number of nonlinear techniques are
utilized: Higher Order Spectra, Correlation and Fractal Di-
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Figure 1. Processing sequence and techniques.

mension, Approximate Entropy, Hurst Exponent, as well as
Recurrence Quantification Analysis. All these techniques are
applicable to an inspection of nonlinear non-stationary signal,
relying on signal frequency spectrum whilst revealing partic-
ular relations between harmonic signal components (cross-
and auto-correlations, the second/third order correlation and
its variations) (Krishnan & Samiappan, 2018; Ramakrish-
nan & Kanagaraj, 2018). To select a subset of features to
be used for classification or pattern recognition purposes, an
automated procedures and algorithms are introduced. The
algorithms commonly used to select the most feasible sub-
set of features with respect to classification accuracy are Bi-
nary Gravitational Search Algorithm and its variations, Ge-
netic Algorithm (GA) and other modified GA-related evolu-
tionary algorithms, Binary Particle Swarm Optimization, and
similar (Gu, Cheng, & Jin, 2018; Chakraborty & Kawamura,
2018).

The Auto Regressive, Auto Regressive Moving Average, as
well as Moving Average models are commonly used for
probabilistic-related analysis of time series data. The pre-
diction of future values in time series data using paramet-
ric models is obtained by averaging previous/current values.
Accordingly, they can be discussed by means of infinite im-
pulse response filters. Consisting of a number of parameters
which have to be estimated, corresponding optimization al-
gorithms/approaches are utilized to minimize output error of
the model (Ramakrishnan & Kanagaraj, 2018; Alickovic et
al., 2018).

2.2. Classification methods and approaches

Not comprehensive but rather a brief review of classification
approaches is given in Table 1. As such, the k-Nearest Neigh-
bor classification method, as commonly used classification
method, is detailed in (Alickovic et al., 2018). Although the
great significance is not given to the selection of classification
method in (Alickovic et al., 2018), a comprehensive analysis
and comparison of EEG signal decomposition methods and

efficient feature extraction for purpose of BCI system devel-
opment is conducted (Alickovic et al., 2018). Here, EMD,
DWT, and WPD alongside PCA are compared to find out the
most reliable set of features to be fed to the classifier, with
emphasize to the importance of higher frequency ranges for
classification purposes.

Recent breakthrough in the field of EEG signal analysis led
to an introduction of fuzzy classifiers (Santos et al., 2017)
for quadcopter control using electroencephalogram headset.
In (Santos et al., 2017), a hybrid Takagi-Sugeno fuzzy model
combined with Bayesian Gaussian model and discriminant
analysis is proposed to classify EEG signal. Forecasting the
epileptic seizure occurrence using Bayesian Linear Discrim-
inate Analysis (BLDA) and diffusion distance on intracra-
nial EEG is proposed by Yuan et al. (Yuan, Zhou, & Chen,
2018). The features are calculated using Wavelet decompo-
sition on segmented EEG epochs and fed to BLDA classi-
fier. Obtained sensitivity is 85.11% for a seizure occurrence
period of 30 min. and 93.62% for a seizure occurrence pe-
riod of 50 min (Yuan et al., 2018). Multiscale Radial Basis
Functions (RBF) and a Modified Particle Swarm Optimiza-
tion are discussed in (Y. Li et al., 2018) in terms of feature ex-
traction considering an adaptive and localized time-frequency
analysis of EEG signal. Obtained features are used as input
into Support Vector Machine (SVM) in order to distinguish
epileptic seizure from normal EEG signal (Y. Li et al., 2018)
proving at the same time high efficiency of aforementioned
approach.

Latest achievements in EEG signal analysis are closely
related to Deep Convolutional Neural Networks (DC-
NNs) (Jiao, Gao, Wang, Li, & Xu, 2018; Acharya et al.,
2017; Tang, Li, & Sun, 2017). Classification of mental
load using DCNN is detailed in (Jiao et al., 2018). The au-
thors (Jiao et al., 2018) propose the improvement of DCNN
by introducing so-called single- and double-model methods.
According to the results, proposed models give slightly better
performance than the conventional CNNs while less number
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Table 1. Brief overview of EEG signal feature selection and classification.

Classification approach(es) Application(s) and method(s) Author(s)
EEG-based BCI

k-Nearest Neighbor and advanced feature extraction Motor imagery movements Alickovic et al., 2018
EMD, DWT, WPD, PCA
EEG-based BCI

Hybrid Fuzzy Classifier Quadcopter control using Hybrid fuzzy model Santos et al., 2017
combined with Bayesian Gaussian model
Epilepsy diagnosis

Bayesian Linear Discriminate Analysis Forecasting the epileptic seizure Yuan et al., 2018
Wavelet decomposition on segmented EEG epochs
Epilepsy diagnosis

Support Vector Machine Modified Particle Swarm Optimization Li et al., 2018
Time-frequency-based analysis
Cognitive tasks and EEG-based BCI Tang et al., 2017
Epilepsy diagnosis Acharya et al., 2017

Deep Convolutional Neural Networks Imagination of hand movement action Jiao et al., 2018
Detection of robot error Behncke et al., 2018
Comparison with CSP/AR/SVM Acharya et al., 2017
Cognitive tasks

Deep Belief Networks & SVM Deep Belief Network for feature extraction Liu et al., 2017
SVM-based classification
EEG-based BCI

Spiking Neural Models Avoidance of long recording sessions Salazar-Varas et al., 2018
Training using reduced number of datasets
EEG-based BCI

Multilayer Feed-forward Neural Network Measurements of movement-related Yang et al., 2017
cortical potentials

of parameters is considered. Proposed approach in (Acharya
et al., 2017) utilizes 13-layer DCNN to distinguish nor-
mal, preictal, and seizure classes. Using such approach,
the accuracy of 88.67% is achieved showing slightly lower
performance than some other commonly used approaches,
avoiding at the same time separate steps for feature extraction
and feature selection. In (Tang et al., 2017), the authors con-
ducted experiments where imagination of hand movement is
inspected. The extraction of features as well as classification
for single-trial here is obtained using DCNN-based models
and compared with the output of CSP/SVM and AR/SVM
classifiers. According to the results, further improvement in
classification performance using DCNN is proven. Applica-
tion of adapted DCNN to detect robot error from EEG signal
from human operating in robot-human environment is pro-
posed in (Behncke, Schirrmeister, Burgard, & Ball, 2018).
The improved accuracy of robot errors decoding from the
EEG of a human observer is proved based on comparison of
three different decoding algorithms (ConvNets, rLDA, FB-
CSP, and rLDA). Moreover, in (Schirrmeister et al., 2017)
deep learning with CNNs is reported as promising tool in
EEG-based decoding and EEG-based brain mapping. Liu et
al. (Liu, Zhao, Hou, & Liu, 2017) in similar manner intro-
duce a Deep Belief Network for feature extraction of EEG
P300 component in ”an autobiographical paradigm test”,
obtaining thus so-called deep characteristic vector from raw
feature vector. Afterwards, the SVM-based classification is
performed using deep characteristic feature vector with high
efficiency (Liu et al., 2017).

Inspired by the success of DCNN in EEG signal analysis,
motor imagery movement classification in (Salazar-Varas &
Vazquez, 2018) using Spiking Neural Models (SNM) is in-
troduced. Key idea in (Salazar-Varas & Vazquez, 2018) is
to avoid long recording sessions for users. As a consequence,
higher demand is set to classifiers/classification methods forc-
ing the same to be trained using reduced number of user
recordings. A coherence from a subset of three electrodes is
calculated and used to show the efficiency of SNM for classi-
fication purposes in case of reduced data sets. In comparison
with LD, FNN, and RBF, the SNM showed the best perfor-
mance (Salazar-Varas & Vazquez, 2018). In addition, multi-
layer feed-forward neural network is applied in (Yang, Lin,
& Lu, 2017) to detect movement intention using movement-
related cortical potentials. The features are extracted using
”the dictionary learning algorithm” and the performance is
compared with the same one of Random Forest and Support
Vector Machine (Yang et al., 2017). It is shown that the ef-
ficiency of multilayer feed-forward neural network is higher
than those shown by RF and SVM.

3. DATASETS AND SELECTED APPROACH

From brief review of feature extraction and classification ap-
proaches given in previous section, it is noticeable that the
time-frequency-based features alongside NNs and the vari-
ety of its modified implementations are most often utilized
in classification/pattern recognition problems of EEG signals.
Here, the detection of epileptic seizures and the recognition
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of BCI-related tasks are analyzed by terms of identification
of common feature vectors.

The datasets used for analysis of epileptic seizure detection
are the datasets provided by Temple University (TUH EEG
Seizure Corpus), captured using standardized 10-20 elec-
trode configuration in Average Reference referential mon-
tage (Golmohammadi et al., 2017). Original data files are
split into multiple files corresponding to the data captured in
duration of 3 s. Further analysis is done on windowed data
originating from a number of sessions related to 20 patients.

The datasets related to the recognition of BCI-related task
used here is Dataset IVa from BCI Competition III provided
by Fraunhofer FIRST, Intelligent Data Analysis Group. “The
data set was recorded from five healthy subjects. Subjects sat
in a comfortable chair with arms resting on armrests. Visual
cues indicated for 3.5 s which of the following 3 motor im-
ageries the subject should perform: (L) left hand, (R) right
hand, (F) right foot.” (Dornhege, Blankertz, Curio, & Muller,
2004). The EEG signal is captured from 118 channels of ex-
tended 10-20 configuration. In this contribution, only subset
of 170 labeled data from 3 channels originating from one sub-
ject (al) is used.

Data processing steps, depicted in Figure 2, are applied to
both aforementioned datasets. For purpose of feature extrac-
tion, 16 channels for epileptic seizure detection and 3 chan-
nels for BCI-related task recognition are selected. As the
events of interest for epilepsy seizure detection are in fre-
quency range <40 Hz (Acharya et al., 2017; Jiao et al., 2018),
the high-pass filtering is at first applied to TUH datasets. The
events of interest for imagery R/F task are in frequency range
<400 Hz, indicating the need for high-pass filtering of fre-
quencies above 400 Hz (Tang et al., 2017). As depicted in
Figures 2 and 3, the next step in the processing of the data
consists of obtaining CWT coefficients through the applica-
tion of CWT transform on filtered data. Further, an aver-
aged values of signal energy per channels, the overall signal
energy, standard deviation between channels, maximum and
minimum values of CWT coefficients can be calculated in or-
der to form feature vector (Tables 2 and 3).

As can be concluded from Table 2, four feature vectors are
generated per considered case. The detailed structure with
mathematical representation of feature vectors F11, F12, F13,
and F14 is given in Table 3. Here, an element Xi−n,k−m rep-
resents the CWT coefficients between k and m CWT scales,
mapped to corresponding frequency range and obtained from
channels between i and n. According to the Table 3, fea-
ture vector F11 includes six individual feature vectors (K1

to K6) of length 16 (in total 16x6 features). Individual fea-
ture K1 from this feature set is a vector which represents av-
eraged absolute values of CWT coefficients per each chan-
nel. Likewise, individual feature K9 from feature vector F14
is a vector containing the percentage of overall signal en-

TUH DATASETS/

BCI I DATASET

Data
filtering

CWT-based
feature vectors

Filtered
data

CWT-based
feature vectors

Classification
(NN/SVM)

Figure 2. Data processing steps.

ergy contained in the last four scales of CWT per particular
channel. Concerning polynomial relationship between CWT
scales and frequency bandwidths, the low frequency band-
width is contained in the last four scales. Contrary, individ-
ual feature K4 of feature vector F12 is a scalar value which
corresponds to the minimum of maximum obtained CWT
values per channel. By analyzing extracted features, it be-
comes noticeable that the feature vectors contain wavelet- and
statistics-based quantities. Furthermore, feature vectors F21,
F22, F23, and F24 have identical structure to feature vectors
F11, F12, F13, and F14 but also slightly changed scaling of
frequency range due to different frequency bands of interest.
It is important to emphasize that only three channels are used
from Dataset IVa (BCI Competition III database), whilst six-
teen channels are used from datasets originating from TUH.

The CWT coefficients for two randomly selected 3 s inter-
vals from TUH datasets after signal filtering are depicted in
Figure 3. Upper figure shows the CWT coefficients of 3 s
window consisting the recordings during seizure occurrence.
The lower figure depicts CWT coefficients obtained from the
recordings whereas no seizure occurred. The individual fea-
tures of feature set F11 are depicted in Figure 4. The z
axis from the plot correspond to the label (seizure/without
seizure), whilst the x and y axes correspond to particular fea-
tures. As such, the relationship between two features from
total 16x6 features in F11 are shown.

Extracted features are fed to both SVM- or ANN-based clas-
sifiers. The implementation of SVM proposed by Chang et
al. (Chang & Lin, 2011) is used. It has to be emphasized that
the designed SVM classifier utilizes Gaussian Radial Basis
Function and Linear Function as a kernel function. More de-
tailed explanation about SVM-based classifiers can be found
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Table 2. Feature vectors

Feature Feature Feature Feature
vector I vector II vector III vector IV

Epileptic
seizure F11 F12 F13 F14
detection
Imagination
of the F21 F22 F23 F24
movements

TUH DATASETS

Frequency
range of interest

Figure 3. CWT image plot of TUH exemplary data:
With and without epileptic seizure occurrence.

in (Liu et al., 2017) and is not further elaborated here. The de-
sign of ANN-based classifiers vary in the number of neurons
in hidden layer as well as in the percentage of the data used
for training and test/validation purposes, primarily related to
the training of ANN.

The results of classification concerning different feature
datasets and classifiers are compared, aiming to find optimal
selection of features and classification approach.

4. DISCUSSION OF RESULTS

Considered combinations of analyzed feature vectors and
classification approaches are given in Table 4.

Noticeably from Table 2, most commonly utilized distribu-
tion of data is described as: i) 80% of the data used for train-
ing purposes and ii) 20% of the data used for validation/test
purposes. Aggravating circumstance in this case is a fact that
the amount of data contained within the datasets is not iden-
tical as different databases are used. However, the unification
of the data from both databases is partially achieved by using
3 s frame windowing and by proper selection of a number of
captured recordings. As such, the amount of data used finally
for classification purposes becomes equal.

The results of classification are given in the last column of
Table 4. At first glance, better performance with respect to
classification accuracy regardless of used classification ap-

Table 3. Detailed structure of feature vectors.

F11

K1 = [mean(abs(Xi−n=1−16,k−m=90−110))]
K2 = [sum(abs(Xi−n=1−16,k−m=90−110))]
K3 = [sum(abs(Xi−n=1−16,k−m=80−90))]
K4 = [max(Xu=1−16,v=120−128))]
K5 = [min(Xi−n=1−16,k−m=120−128)]
K6 = [sum(abs(Xi−n=1−16,k−m=120−128))]

F12

K1 = [max(Xi−n=[0,4,8,14,16],k−m=90−110)]
K2 = [max(Xu=[0,4,8,14,16],v=120−128)]
K3 = [min(Xi−n=[0,4,8,14,16],k−m=120−128)]
K4 = min(max(Xi−n=1−16,k−m=90−110)
K5 = min(sum(abs(Xi−n=1−16,k−m=90−110))
K6 = min(sum(abs(Xi−n=1−16,k−m=80−90))
K7 = min(max(Xu=1−16,v=120−128))
K8 = min(min(Xu=1−16,v=120−128))
K9 = min(sum(abs(Xi−n=1−16,k−m=120−128))
K10 = mean(max(Xi−n=1−16,k−m=90−110)
K11 = mean(sum(abs(Xi−n=1−16,k−m=90−110))
K12 = mean(sum(abs(Xi−n=1−16,k−m=80−90))
K13 = mean(max(Xu=1−16,v=120−128))
K14 = mean(min(Xu=1−16,v=120−128))
K15 = mean(sum(abs(Xi−n=1−16,k−m=120−128))
K10 = max(max(Xi−n=1−16,k−m=90−110)
K11 = max(sum(abs(Xi−n=1−16,k−m=90−110))
K12 = max(sum(abs(Xi−n=1−16,k−m=80−90))
K13 = max(max(Xu=1−16,v=120−128))
K14 = max(min(Xu=1−16,v=120−128))
K15 = max(sum(abs(Xi−n=1−16,k−m=120−128))

F13

K1 = [std(max(Xu=1−16,v=120−128))]
K2 = [max(Xu=1−16,v=120−128)]
K3 = [min(Xi−n=1−16,k−m=120−128)]
K4 = [sum(abs(Xi−n=1−16,k−m=120−128)]

F14

K1 = [mean(abs(Xi−n=1−16,k−m=90−110)]
K2 = [sum(abs(Xi−n=1−16,k−m=90−110)]
K3 = [sum(abs(Xi−n=1−16,k−m=70−90)]
K4 = [max(Xu=1−16,v=120−128)]
K5 = [min(Xi−n=1−16,k−m=120−128)]
K6 = [sum(abs(Xi−n=1−16,k−m=120−128)]
K7 = [max(Xu=1−16,v=115−126)]
K8 = [min(Xi−n=1−16,k−m=115−126)]
K9 = [(sum(abs(Xi−n=1−16,k−m=125−128))/

sum(abs(Xi−n=1−16,k−m=1−128)) · 100]
K10 = [(sum(abs(Xi−n=1−16,k−m=125−128))/

(sum(abs(Xi−n=1−16,k−m=60−128)) · 100]
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Figure 4. Exemplary members of feature set F11.

proach (ANN/SVM) is achieved using feature vectors F11
and F14 or, equivalently for imagined R/F movement action
classification, F21 and F24. Such results are reasonable and
expected as i) feature vectors F12/F22 contain high number
of averaged quantities, losing thereby identifiers able to dif-
ferentiate particular labels, ii) the number of feature elements
within feature vectors F11/F12 and F14/F24 is higher than
the same one concerning F12/F22 and F13/F23, and iii) the
inclusion of standard deviation in F13 feature set contributes
to the problem of the data which are not normalized. Conclu-
sion made from previous discussion is: i) the values of feature
vector elements has to be normalized in a way that have no
high impact on distinguishability and homogeneity of the el-
ements, ii) the decision about either inclusion or exclusion of
particular element from the feature has to be made under con-
sideration of the nature of signal, and iii) the averaging of the
values which vary in broad range (have large standard devia-
tion) is not recommended as it enables the loss of values that
are small in relation to maximum or minimum values.

As the number of features included within F11/F12 and
F14/F24 is high and therefore can be considered as disad-
vantage alongside provided acceptable results of classifica-
tion, the application of particular approach for data reduction
(PCA or similar) is proposed in order to obtain the minimum
number of features with slightly worse or even the same re-
sults of classification.

Moreover, the results obtained using different classifiers
(here: ANN- and SVM-based classifiers) are comparable and
highly affected by the design of classifiers. For instance, dif-
ferent kernel function used within SVM or different num-
ber of neurons in hidden layer within ANN has an impact
to classification results, as pointed out in Table 4. In addition,
the performance of classifiers by terms of classification ac-
curacy, obtained under consideration of aforementioned fea-
ture vectors, seem to be comparable with the performance of

Table 4. Proposed selection of feature sets and classifiers.

# Classifier Feature Classification
parameters set accuracy
ANN, 10 hidden neurons,

#1 80/20 % training F11/F21 94.7/93.2
and validation/test
data distribution
ANN, 8 hidden neurons,

#2 80/20 % training F12/F22 83.2/84.1
and validation/test
data distribution
ANN, 6 hidden neurons,

#3 70/30 % training F13/F23 87.6/86.5
and validation/test
data distribution
ANN, 12 hidden neurons,

#4 75/25 % training F14/F24 95.5/96.2
and validation/test
data distribution
SVM, RBF

#5 80/20 % training F11/F21 88.5/90.1
and validation/test
data distribution
SVM, RBF

#6 80/20 % training F12/F22 81.2/81.4
and validation/test
data distribution
SVM, LF

#7 70/30 % training F13/F23 87.6/90.1
and validation/test
data distribution
SVM, RBF

#8 75/25 % training F14/F24 94.7/97.1
and validation/test
data distribution

other common approaches, according to the publications ref-
erenced in this contribution.

5. CONCLUSION AND OUTLOOK

The identification of features/feature vectors applicable to
EEG signal analysis with respect to epilepsy seizure detec-
tion and BCI-related tasks is performed on publicly available
datasets. The CWT is applied to aforementioned datasets to
extract a number of time-frequency-based features, whereas
the classification results obtained concerning NN- and SVM-
based classifiers are compared in terms of classification accu-
racy and the capability of particular features for classification
purposes.

According to obtained results, the most accurate classifica-
tion is achieved by using feature sets F11 and F14 (or F21
and F24) and ANN classifiers with high number of neurons in
hidden layer (ca. 97 %). Furthermore, the application of pro-
posed approach to both epilepsy seizure detection and BCI-
related tasks prove epilepsy diagnosis more discriminative in
comparison with BCI-related tasks.

Evidently from the given analysis, the trade-off between fea-
ture extraction and classifier selection, with respect to time
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consumption, complexity of the algorithms, and computa-
tional power, has to be found. Furthermore, the latest achieve-
ments in EEG signal analysis indisputably include artificial
intelligence methods, such as NNs and their variations. In-
deed, implementation, requirement on computational power,
as well as complexity of applied algorithms/methods along-
side with increasing number of features become more chal-
lenging. In order to cope with all these challenges, the en-
hancement in time efficiency of algorithm execution is re-
quired. The latest endeavors are thus related to real-time ex-
ecution of algorithms using Field Programmable Gate Array-
based hardware platforms.

NOMENCLATURE

EEG Electroencephalography
ECG Electrocardiography
BCI Brain Machine Interface
ERP Event-Related Potentials
(A)NN (Artificial) Neural Network
SNR Signal-to-Noise Ratio
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
WPD Wavelet Packet Decomposition
EMD Empirical Mode Decomposition
HHT Hilbert-Huang Transform
IMF Intrinsic Mode Function
CSP Common Spatial Pattern
SVM Support Vector Machine
GA Genetic Algorithm
PCA Principal Component Analysis
ICA Independent Component Analysis
LDA Linear Discriminant Analysis
BLDA Bayesian Linear Discriminate Analysis
DCNN Deep Convolutional Neural Network
DBN Deep Belief Network
SNM Spiking Neural Models
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