
An Extensible System for Optical Character Recognition of
Maintenance Documents

John A. Labarga1, Amardeep Singh2, and Vera Zaychik Moffitt, Ph.D.3

1,2,3 Lockheed Martin, Shelton, CT, 06484, USA
john.a.labarga@lmco.com
amardeep.singh@lmco.com

vera.zaychik@lmco.com

ABSTRACT

In the course of maintenance and operations, equipment oper-
ators and manufacturers frequently generate large volumes of
paper documents. This is particularly the case in maintaining
legacy systems, and when external factors (e.g. security con-
cerns, environment, training procedures) make it infeasible
to record data in a computer system at the work site. These
paper documents may contain essential information about as-
sets, such as their cost, performance, and reliability. To im-
plement analytics or automated monitoring, these documents
must later be converted to digital copies, which can be in-
gested into a database. This paper describes a flexible sys-
tem for converting tabular paper forms into digital documents
through Optical Character Recognition (OCR), utilizing open
source tools and packages. The resulting application offers
a template-based configuration interface, which allows it to
handle a variety of document types. This system also allows
for the incorporation of business rules and processes that de-
liver high fidelity digital copies.

1. INTRODUCTION

In many settings, maintenance documents are available pre-
dominantly or exclusively in a paper format. These docu-
ments may contain critical data about the status, performance,
and configuration of an aircraft. As a result, aircraft operators
and manufacturers prefer to have this data available in a dig-
ital format. This generally requires scanning a document to
produce an image, using OCR to produce a digital copy of the
text, in an appropriate format for a database.

While a variety of Commercial Off-The-Shelf (COTS) OCR
solutions exist, they are typically designed for free-text doc-
uments (e.g. letters, book pages) and simple forms. When
processing complex forms containing irregularly-shaped

John Labarga et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

fields and many sections, these applications often deliver
improperly-formatted, low-fidelity output. A custom solu-
tion, incorporating domain expertise and business rules, can
deliver higher performance in this setting.

This paper describes an extensible framework for building a
tool to perform OCR on custom forms, with a focus on apply-
ing this framework to maintenance documents. This frame-
work consists of open source software, and can be readily
adapted to new applications using the techniques described.

The framework consists of two basic steps: decomposing
the form into a series of elementary sections, and perform-
ing OCR on these sections before reassembling them into a
digital document. The framework is sufficiently general that,
after building a tool from it, the user can directly convert an
image of a paper form into a spreadsheet or SQL table.

To achieve high-fidelity OCR output, the document must be
broken down into small chunks of text. In the case of a pa-
per spreadsheet, the natural segmentation approach is to split
the document into its cells. In order to do this, the authors
use the OpenCV (Bradski, G., 2000) python package, which
provides a variety of image processing and computer vision
utilities. This package is used to extract cells from the form,
resulting in a series of smaller images consisting mostly of
unstructured text. Section 4 describes strategies for document
image segmentation to achieve optimal OCR performance.

These image segments are then passed through an OCR pro-
gram to extract the text content. For this purpose, the au-
thors use Google’s Tesseract OCR engine. Tesseract is a cus-
tomizable, retrainable OCR solution, which achieves high fi-
delity when used for unstructured text OCR. While it is pack-
aged with the ability to read standard fonts with high accu-
racy, Tesseract can also be modified to perform OCR on cus-
tom fonts, as appear in typewritten documents and internal
forms. Section 5 describes how to modify Tesseract’s charac-
ter recognition models to adapt it for custom fonts. This paper
also shows how to provide the OCR engine with regular ex-

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

pressions, which boosts OCR performance on part numbers,
dates, etc. After OCR is complete, further improvements are
made by applying business rules. If a form entry commonly
has a specific format (e.g. a telephone number), then a post-
OCR processing rule might look for text which is in approxi-
mately the same format as a telephone number. This approx-
imate match for a telephone number is then formatted appro-
priately.

Section 7 describes how to reassemble the OCR output into
a digital document. This discussion includes strategies for
handling errors in the extraction and OCR processes. Fi-
nally, Section 8 discusses the evaluation framework and per-
formance the system achieves on a representative dataset.

2. MOTIVATION

Comprehensive and accurate data is essential to the moni-
toring and maintenance of industrial systems and assets. In-
creasing the amount of data available about an asset improves
an organization’s overall understanding of its own operations,
which enables better decision-making. In addition to the ben-
efits of collecting comprehensive data, the expense and dura-
tion of analysis can be reduced by storing data in an accessi-
ble format, e.g. in an organization’s database rather than as
physical records.

For example, an airline may seek increased aircraft availabil-
ity. After some analysis, it may be found that the primary
cause of unavailability is schedule overruns in engine mainte-
nance, caused by underestimation of maintenance scope. The
airline’s goal is to better anticipate the scope of maintenance,
to have components and technicians in place to complete the
work on time. This effort is more likely to succeed if detailed
maintenance logs and component invoices are available, than
if only the frequency of engine maintenance has been tracked.

Many organizations have significant amounts of historical
data stored in an analog format, in support of long-standing
process management and compliance functions. Among
these are free-text documents, physical record books, and
custom forms. While they preserve data, these formats are
not conducive to computerized data mining or analysis. Each
non-digitized physical record represents a gap in the organi-
zation’s analytic capacity, as information that is unavailable
for statistical analysis and visualization.

A common approach to digitizing such documents is man-
ual transcription, in which the document’s overall format is
reproduced in a digital form, and its contents are entered by
hand. This process is costly, and may introduce errors into
the organization’s databases. Manual transcription requires
monotonous, fatiguing work that is prone to mistakes. This
is in contrast to a software approach, where the marginal cost
of digitizing a document is low, and the performance is con-
sistent.

In view of these issues, some organizations have begun to
offer generic document OCR solutions.1 While typically ori-
ented toward free-text documents, the ability to handle com-
mon or simple forms is sometimes offered with this software.
As a result, an off-the-shelf solution is sufficient for some ap-
plications.

While commercial OCR solutions have benefited from
decades of research in computer vision, they still have per-
formance and quality issues when non-text marks are in close
proximity to the desired text. This problem is amplified for
documents with grids and other structural features. Feeding
an entire log card image into a COTS OCR solution often
results in output of inconsistent quality. The authors tested a
COTS OCR solution against a sample of forms, and found the
performance to be poor: the software was able to OCR and
reconstruct only 45.74% of the cells in the forms. Particular
problems included vital text being misaligned and populated
in the wrong section, grid edges assumed to be characters re-
sulting in spurious text, and entire cells and sections missing
due to image quality issues.

In order to address these problems, a framework is needed
that can decompose a document into a series of simple sec-
tions to which available tools can be applied. This method
would remove most edges that can cause low fidelity in the
OCR output, but also allow for independent control of each
segmented image during later processing. The format of the
document and features of the data contained could be incor-
porated into the processing of these images, yielding an ex-
tensible OCR system. Having control of this workflow can
also increase the fidelity of the OCR process.

In this application, maintenance documents have numerous
data types depending on cell and section, ranging from dates
and part numbers to free text. COTS software did not al-
low for any inputs such as regular expressions to fine-tune
the output. Developing an independent OCR pipeline is not
only advantageous for pre-processing inputs such as regular
expressions, but also for incorporating post-processing algo-
rithms based on cell type to further improve the output. Since
the software was developed in-house, it can easily be adapted
to new forms and documents. Overall the advantages of de-
veloping an in-house solution outweighed the low-cost but
highly inconsistent output from a COTS platform.

3. DATA PREPARATION

Extracting and analyzing the rich data in maintenance doc-
uments can have numerous impacts for a product, includ-
ing identifying insights that allow for maintenance reduction,
cost savings, and even improving product life cycle. The
method by which a maintenance document is created, main-
tained, and tracked can vary drastically across product lines
and industries. In the case of helicopters, maintenance doc-
1Examples include software produced by Nuance, Dropbox, and Adobe.

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

uments, also known as log cards, stay with the part until the
end of the part’s life. Mechanics and aircraft operators do
not always have access to a computer while in the field and
as a result will update these documents with a portable type-
writer or hand-written text. Since the log card is always in
a physical medium, it can accumulate damage over the life-
time of a part, further reducing legibility. A typical log card
goes through numerous iterations of scanning, printing, and
manual updating by typewriter or by hand. This process of-
ten results in the log card containing erroneous marks, gaps
in lines, faded text, smudges, and other defects. Before the
valuable data in a log card can be converted into digital for-
mat for analysis, it is paramount that the physical document
be scanned at a high image quality.

A low quality scan will create more errors downstream during
the image segmentation and OCR phases. Through numerous
tests of the OCR performance, a minimum scan quality of 300
dots-per-inch (DPI) was identified to be ideal. When compar-
ing a 200 DPI and 300 DPI scan the difference in quality may
not be immediately visible to the human eye; however, for a
computer reading the image at the pixel level, a 200 DPI scan
results in a degradation of image quality which can reduce
OCR performance by more than 50 percent. Furthermore,
the file format the log card scan is saved as is also important.
Since the image quality is vital to the process, it is important
to save the scan in a lossless compression file format such
as Portable Network Graphics (PNG), as opposed to a lossy
compressed file format such as Joint Photographic Experts
Group (JPEG).

A product can contain hundreds or even thousands of parts
with varying maintenance content and document formats. A
complex and sophisticated product such as a helicopter con-
tains numerous systems and subsystems that may have dif-
ferent maintenance document schemas. A schema covering
components from one system may contain specific sections
of data that are not applicable or shown on another schema
with different parts. The authors found that implementing
one representation for all variations would be impractical and
result in a highly fragile and error-prone system.

A solution to this problem is to identify the number of doc-
ument schemas that represent the target population and de-
velop a template for each schema. Each maintenance docu-
ment is matched with its corresponding template, and specific
business rules and methods encoded in this template are ap-
plied during the image segmentation, optical character recog-
nition, and reconstruction phases. The template approach
yields an extensible and reusable framework for performing
OCR on forms. This software can be extended to a new doc-
ument by producing a corresponding template, and incorpo-
rating it into the system.

4. IMAGE EXTRACTION

Each log card is a combination of sections, where each sec-
tion is approximately a table grid with a title, column head-
ings, and one or more data rows. The goal of image segmen-
tation is to locate each content cell and save it as a separate
file with the correct section and cell number identified. This
allows other processing components downstream to take ad-
vantage of the cell context information to improve overall ac-
curacy, as we discuss in Section 5. A powerful and robust
computer vision library available in Python called OpenCV
was utilized for developing a solution to segment the image
into its sub-cells.

Image segmentation consists of the following steps:

1. Extract each page of the log card. The following steps
are performed on each page.

2. Locate the overall input grid using cropping and rotation
as necessary.

3. Segment the image into card sections that have different
semantic meaning. The following steps are performed on
each section.

4. Overlay the grid of row and column lines to find every
input cell. For each cell in order, crop lines and save as a
separate image, if not blank.

We discuss each step in turn.

4.1. Page Extraction

The scanned log cards are provided as multi-page PDF files.
We use GhostScript (Artifex Software, 2018), an open-source
library, in batch mode to extract an image file for each page.
The rest of the processing is performed using various image
functions of OpenCV. The quality of the saved image is vari-
able. Maintenance documents can travel with a part for years
and as a result the physical document often contains smudges,
hole-punches, spurious characters, erroneous lines, etc. This
document abuse becomes even more pronounced when the
document is scanned and converted into an image.

4.2. Cropping and rotation

The goal of this step is to orient the main grid such that only
the card itself remains and the horizontal row lines are paral-
lel to the bottom and top of the grid, while the vertical column
lines are parallel to the left and right of the grid. The align-
ment of the grid in this fashion simplifies all the subsequent
steps of finding and extracting card sections. The simplest ap-
proach is to detect the largest external contour. However, in
practice the image may have line gaps due to hole punches,
spurious text outside of the grid but close to it, handwritten
lines that extrude from the grid, and other issues that pre-
vent reliable correct contour detection. We need to inscribe
the largest quadrilateral into the largest contour hull. In the

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

absence of an efficient algorithm for doing so, we locate the
four corners and connect them. The warp perspective func-
tion then can take the four corners and crop/rotate accord-
ingly. Figure 1 shows an example log card with the largest
outer contour and the detected grid border.

Figure 1. The log card is slightly askew and some of the text
is outside the grid but close enough to be part of the detected

contour. The blue line is the largest external contour that
OpenCV detected. The light blue dots indicate the detected

box corners. The image is blurred to obscure sensitive
information.

4.3. Section extraction

Each log card page consists of two or more sections that are
essentially tables to capture different types of information.
Since each section follows a consistent layout of a title fol-
lowed by column headings and one or more content rows, the
most reliable way to segment the page into sections is to de-
tect each section title cell that spans the page width, which
can be done by detecting contours in OpenCV. The space be-
tween the section titles or between the title and the bottom
of the page is a single section. Sections are numbered se-
quentially. A similar process is used to eliminate the column
headings. Figure 2 shows an example section with the head-
ing candidates identified.

4.4. Cell extraction

To detect the row and column lines forming the cell grid, the
Canny edge detector (Canny, 1986) works well. The detected
lines do not span the height or width of the image because of
line breaks from fading and other defects from the scanning
process. Each detected line can be used as a candidate in
a voting process (Matas, Galambos, & Kittler, 2000). The
voting is important because of occasional hand-written word
cross-outs and other noise, as can be seen in Figure 3. The
results of the voting process, consensus lines, form the grid
of individual cells. Each cell in order from left to right and
top to bottom is mapped to its label based on the template.
The template, read in from a file, specifies which cells to skip

Figure 2. A single page of the log card with the section
headings identified with green rectangles. The cells span the

image width and separate one section from another. The
image is blurred to obscure sensitive information.

and is a mapping from raw section and cell numbers to output
section and cell numbers. In Figure 3 one highlighted cell is
from section 2 and is 16th in a sequence, but is saved as cell
2-15. If a cell is blank – image mean intensity is above the
threshold – then it is not saved.

The cells, once saved, go through to the next stage: OCR.

5. OPTICAL CHARACTER RECOGNITION

Optical Character Recognition is the process of converting an
image of text into a digital representation of that text. It is
an essential component of a document digitization pipeline,
since the alternative is time-consuming manual transcription.
The result of OCR is a digital representation of the text in
an image, which can be further processed or loaded into a
database.

Regardless of the particulars of an implementation, OCR fi-
delity is generally a function of the complexity of an image.
For a given OCR program, higher fidelity can be achieved on
a simple image (e.g. a line of text from a book), than on a
complex image (e.g. an image of a spreadsheet). This is the
motivation for the cell extraction procedure described above;
the contents of an individual cell can be converted with higher
accuracy than a spreadsheet, or section thereof.

5.1. Potential Strategies

Since OCR is necessary for efficient document digitization,
various approaches exist to implement it. In general, the two
basic strategies are to build an OCR solution from scratch, or
to adapt a prepared solution to the documents that are relevant
to the application.

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Figure 3. Line detection is used to overlay the grid to extract the cells. However, spurious lines must be ignored, like the one
encircled.

One approach is to build a novel OCR program, using a ma-
chine learning algorithm. The MNIST dataset, a common
benchmarking dataset for computer vision algorithms, con-
sists of a large number of labeled handwritten numerical dig-
its from the set {0, ..., 9}. This dataset can be used to con-
struct a novel OCR solution that can convert images of hand-
written individual digits to digital representations of numbers.
Similar datasets are available for handwritten characters and
for typed text, to train a model to perform OCR on handwrit-
ten and typed words and sentences.

An advantage of training a custom OCR solution is the ease
of tuning the model to domain-specific fonts or characters. If
the text to which the model will be applied is different from
that on which it was built, the model will tend to perform
poorly. This is a weakness of off-the-shelf OCR solutions,
which tend to be trained on extracts from books or newspa-
pers; these extracts might bear little resemblance to the text
on the documents for a specific application. A custom solu-
tion can simply take examples of this font, and add it to the
model’s training set.

However, constructing a character classifier from scratch is
not an efficient solution to this problem. One issue that arises
is that although the character classification effort may achieve
high accuracy, an effective OCR solution must also learn to
decompose sentences into words, and words into characters.
This is a non-trivial problem, requiring additional software
and modeling.

Additionally, a custom character classifier is unlikely to out-
perform tuned models constructed by experts. Publicly-
available OCR models, constructed by researchers in com-
puter vision, can achieve character-level accuracies of 99%
or higher. A novel solution is unlikely to exceed such perfor-
mance.

Finally, the amount of training data needed to construct a
custom OCR solution is an obstacle to this approach. The
MNIST dataset consists of 60,000 examples, or about 6,000
examples per digit. While typed text is less challenging to
recognize than handwritten text, an effective OCR solution
would likely still require hundreds of examples per glyph to
achieve good performance. To train a custom OCR solution
would require an upfront investment in producing potentially
tens of thousands of training examples.

The alternative to building a custom model is to use an off-
the-shelf OCR tool. As previously discussed, a complete
piece of OCR software is often not ideal for this purpose,
since it may perform poorly on detailed forms. Thus the strat-
egy is to extract the individual fields and apply an OCR tool to
each. A fast, scriptable tool (i.e. not a GUI tool) is needed to
do this, since a form may contain hundreds of these extracts.
Ideally this tool will also be trainable, to accommodate un-
usual fonts and characters.

5.2. Tesseract

Tesseract (Google Inc., 2017) is an open-source OCR tool
that offers a robust training set and the ability to add cus-
tom training examples. Originally developed at HP in the
1980s, the tool is now maintained and developed at Google.
Tesseract is commonly used as a back-end OCR solution,
and has APIs available in several languages, including C++
and Python. Comparisons have shown Tesseract to be faster
and more accurate than competing back-end OCR solu-
tions (Patel, Patel, & Patel, 2012).

Tesseract can be used without any modifications, but also
offers the ability to add domain-specific training examples.
This increases its performance on custom fonts and charac-
ter sets; untrainable off-the-shelf tools will tend to under-
perform in this case. This retraining process is described in
the documentation, and uses other open-source tools to pro-
duce the necessary training data.

In addition to providing high-fidelity OCR at the character
level (Smith, 2007), Tesseract incorporates an English dictio-
nary to improve its performance on common words. The user
can add custom words to this dictionary; this is an important
feature, since many terms that are common in support doc-
uments are rare in books and newspapers (e.g. part names,
malfunction terminology). Tesseract also allows the user to
supply common patterns in the data, i.e. regular expressions
which commonly appear in their documents. This is useful
for improving performance on serial numbers, physical mea-
surements, and other fields with entries that typically conform
to some regular format.

Tesseract is trained on typed text, and generally does not per-
form well on handwritten text. If handwritten text is clear
and consistent, it may be possible to introduce examples as
would be done with a font. However, handwritten text OCR

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

is an area of active research, and emerging solutions are likely
more appropriate than Tesseract.

5.3. Adapting Tesseract to Custom Fonts

The image set used to train the base distribution of Tesseract
consists of extracts from books and newspapers. As a result,
the software’s performance is high on fonts that are common
in these sources (e.g. Times New Roman), but may be consid-
erably lower on typewriter fonts and fonts particular to word
processing software.

If the OCR fidelity on custom fonts is unacceptable, it is pos-
sible to add extra training data (i.e. labeled example of the
custom font) to Tesseract and to then retrain the character
recognition models. This process involves gathering and la-
beling a sample of images containing text written in the cus-
tom font. The necessary size of this sample varies with the
complexity of the glyphs, as well as the number of glyphs.
For example, a complex font such as Blackletter, or a lan-
guage with a large character set such as Chinese, will require
a larger image sample than a typewriter font.

Once a sufficient sample has been collected, the glyphs must
be labeled with their character values. Open source software
is available for expediting this task, such as JTessBoxEditor.
This software automatically identifies glyphs in the sample
images, and allows the user to input the appropriate value. In
the event that glyphs are mis-identified, the user can modify
the “bounding boxes” that isolate and individual character.

This process yields a set of files that can be fed into Tesseract,
which will retrain its character recognition models to recog-
nize the supplied examples as a discrete font. This will im-
prove the OCR fidelity when using Tesseract on documents
containing this font.

5.4. Regular Expressions and Custom Words

Maintenance forms often contain data that conforms to some
pattern, or contains some jargon that is uncommon in gen-
eral English. In these cases, it can be helpful to register such
patterns or jargon with the OCR engine, to increase the like-
lihood that these elements will be recognized correctly.

Tesseract allows the user to supply two text files, containing
custom patterns and custom words. These files are referenced
as OCR is taking place. For example, if the data commonly
contains phone numbers in the format XXX-XXXX, the cor-
responding regular expression is \d{3}[-]\d{4}, which
can be added to the user patterns file. Similarly, the word
widget might appear frequently in the data, but rarely in
general English. This word should be included as a user word
to increase the likelihood that it will be recognized correctly.

5.5. Using Tesseract in an OCR Application

The Tesseract API provides a variety of endpoints for ex-
tracting digital text from images. These can be arranged to
increase the accuracy OCR output, while conforming to busi-
ness rules and integrating fully with the rest of the document
processing application. While supplying domain-specific
regular expressions and words generally improves the qual-
ity of the OCR, the output often still contains some errors,
which can be corrected by accessing these API endpoints.

The principal API endpoint, GetUTF8Text, returns the OCR
result for an image. Tesseract can also be run as a command
line program; UTF8Text returns the same result as if the com-
mand line utility were being used. The result is a plaintext
string, which can be passed to the document reconstruction
utility.

Other endpoints offer more verbose output, which can be used
to improve the OCR fidelity. Among these is MapWordCon-
fidences, which returns a series of (Word, Confidence) pairs.
Each discrete word found in an image by Tesseract receives
a confidence score. This utility is useful for filtering out low-
confidence results, while retaining high-confidence results,
which are likely correct. This solves a common problem in
recognizing the text in a cell: the OCR utility will sometimes
recognize non-word entities, and try to assign characters to
them. For example, the cells in a form may have stray marks,
hand-drawn notations, scanning artifacts, etc. These will ap-
pear in the MapWordConfidences output as low-confidence
pairs, which can be filtered out by setting a threshold on the
confidence.

At this stage, a custom dictionary can be imported and com-
pared against the individuals words identified by OCR. If
a word identified by OCR has low confidence and is simi-
lar to a dictionary word (e.g. BEARING mistakenly read as
BEAR1NG), a substitution can be made.

Another useful endpoint is GetChoiceIterator, which can be
used to enumerate the possible choices for a character. For
example, it is common for 0 to be errantly read as O, B as 8,
etc. The character iterator can be used to construct different
possible ways to read a cell, by iterating through the choices
for a character and assembling the corresponding OCR can-
didates. This is useful when a cell must conform to a regular
expression. If the initial OCR result does not fit this regu-
lar expression, the choices can be iterated through to find a
combination of candidates that does. This supplements the
aforementioned pattern dictionary, to guarantee that the OCR
of a cell conforms to a given type.

As an example, consider a situation where an image truly
contains the text B1234, but is erroneously recognized
as 81234. Extracting the candidates for each glyph
may yield {{8, B}, {1, I}, {2}, {3}, {4, A}}. The alter-
native recognitions assembled from this candidate set are

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

{81234,B1234, . . . ,BI23A}. If the content of this cell is
known to be one letter followed by four numbers, then only
one of these alternative recognitions can be correct.

In practice, these regular expressions are read from a tem-
plate describing the overall structure of the document. Typi-
cally only a subset of the document contains data which con-
forms to a type. A practical consideration for the procedure
described above is that for long regular expressions, or glyphs
for which there are many candidates, the number of alterna-
tive ways to recognize the cell may be large. The number of
recognition alternatives generated by this procedure is

S =
∏
i

|Ci| (1)

where Ci is the set of candidates for the ith glyph, and |Ci| is
the size of that set. S can be calculated before generating the
recognition alternatives. Based on the available computing
resources, a limit can be set on S, above which the described
procedure will not be performed.

When the OCR process for a given cell is complete, the dig-
ital text is returned to the application. The data for each cell
is then reassembled into a digital representation of the docu-
ment.

6. DATA MAPPING

An extensible system adapts and scales according to the pro-
vided input, in this case the log card being processed. As a
result of log cards having various formats, corresponding pa-
rameters and business rules are applied based on its schema.
A template file containing all inputs needed to efficiently pro-
cess the log card is vital to the system. This template file con-
tains inputs that are used downstream in the image segmen-
tation and OCR processes. During the image segmentation
process this template is referenced to correctly label each im-
age segment. Like a typical table, a log card also contains
cells with various data types depending on the column it is
located in. To improve OCR performance the template high-
lights what regular expressions need to be applied based on
the data type of each cell.

7. DOCUMENT RECONSTRUCTION

The final process of the system is to intelligently aggregate
all the segments of data that were created during the opti-
cal character recognition process and recreate the original log
card. The template file is the root source that helps achieve
this since it is utilized in the naming convention for the image
segmentation process. Each file output for the prior phases
were named according to the template being processed, sec-
tion number the file belongs to, and the cell number in that
section. Table 1 shows an example of this naming conven-
tion.

Table 1. This naming convention allows for each output file
to be mapped to its corresponding location during the

reconstruction process.

Filename Template01-2.11.txt
Template Name Template01
Section Number 2
Cell Number 11
File Extension .txt

A preliminary method of outputting the OCR data into a
spreadsheet was created using a Pandas data frame structure
since it closely resembled a table with column and rows. A
data frame was created for each section of the template with
column headings and valid cell number data extracted from
the initial template file. As the system read each OCR text
file it utilized the file name to locate the matching data frame
and cell number to transcribe the OCR data. Once an entire
log card was processed the data frames were output into a
spreadsheet. A more robust method of exporting the data into
a database is still under development. The file naming con-
vention will once again play a key role in order to map each
data point to the correct field in a SQL table.

8. PERFORMANCE

Two key categories needed to be tracked for accuracy to val-
idate overall system: image segmentation and optical charac-
ter recognition. A truth data set for each template needed to
be established to measure accuracy across the system. Due
to the nature of the problem of converting physical data into
digital data, developing the truth data required manual effort
and could not be automatically generated. Since the pool of
maintenance documents would grow by 70-100 each month
it was not feasible to generate truth data for each document
each month. To add to this issue each log card scanned did not
comprise of the same image quality. To combat this problem,
the population at the time of 300 log cards, were analyzed
and divided into three complexity levels of low, medium,
and high. The complexity level was based on the follow-
ing criteria: Typed Text, Legible Handwritten Text, Illegible
Handwritten text, Faded Text, Erroneous Marks, Background
Noise, and Image Orientation. A log card that was consid-
ered a low complexity level, i.e. system will require minor
post processing to improve quality of image extraction and
OCR, contained only typed text, and few erroneous marks.
Log cards classified as medium complexity contained a hy-
brid case of typed text, legible handwritten text, faded text,
and minor background noise. Lastly log cards classified as
high complexity contained little typed text, illegible hand-
written text, significant erroneous marks, faded texts, back-
ground noise and orientation issues. Table 2 shows the com-
plexity breakdown of the 300 evaluated log cards.

Truth data for the image extraction and optical character
recognition phases was generated based on the above com-

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Table 2. Log card complexity breakdown.

Low Medium High
56.7% 23.8% 19.5%

plexity breakdown to ensure majority of the cases were cap-
tured. This also allowed for a more true representation of the
overall system performance.

The image segmentation phase has the greatest impact down-
stream, directly affecting the optical character recognition
and reconstruction phases. The more errors this phase has the
more errors occur during the OCR and reconstruction phases
since the output from the image segmentation phase is the in-
put into the subsequent phases. Common errors discovered
included improper segmentation resulting in combined seg-
ments, missing segments or even cut-off segments. To min-
imize errors downstream this phase required rigorous testing
and also had the largest truth data set of 100 log cards equat-
ing to over 7000 image extracts. Accuracy for this phase was
measured at the document level. For example, if a mainte-
nance document had 100 valid image segments then the test
case needed to output all 100 image segments to pass test-
ing. If the test case did not output the same cells as the truth
data for that document it failed and needed to be re-evaluated.
Current accuracy of the image segmentation phase for the first
template is at 88% and at 90% for the second template. Sub-
sequent templates are still under development and have not
been tested.

The optical character recognition phase had a smaller data
set of 50 log cards resulting in a population of roughly 3000
files. OCR accuracy was evaluated at the cell level. When a
log card was evaluated for accuracy each cell was compared
to its corresponding valid cell in the truth data set. A test
cell having a 100% match with the truth data cell resulted in
a pass. This process was applied across an entire log card
and the results were aggregated to get the OCR accuracy for
that log card. A system level accuracy score was obtained by
calculating the mean of all log card scores. Current system
level accuracy of the optical character recognition phase for
the first template is at 84%.

9. CONCLUSION

This paper discussed an extensible system for maintenance
document OCR. Traditional off-the-shelf OCR solutions have
inconsistent performance on tabular data. By segmenting
the document into sub-images or cells and feeding that into
an OCR engine results in consistent and accurate output.
Furthermore this approach allows for granular level controls
across all phases of the process from fine tuning the im-
age segmentation phase to adding custom regular expressions
based on document schema. Lastly this approach is scalable
and adaptable to the various maintenance document schemas
a product line may entail, ultimately reducing labor costs and
increasing advanced analytics capabilities.

REFERENCES

Artifex Software. (2018). Ghostscript. Retrieved from
https://www.ghostscript.com.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Jour-
nal of Software Tools.

Canny, J. (1986). A computational approach to edge detec-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence(6), 679-698.

Google Inc. (2017). Tesseract. Retrieved from
https://github.com/tesseract-ocr.

Matas, J., Galambos, C., & Kittler, J. (2000). Robust De-
tection of Lines Using the Progressive Probabilistic
Hough Transform. Computer Vision and Image Un-
derstanding, 78(1), 119-137.

Patel, C., Patel, A., & Patel, D. (2012). Optical Character
Recognition by Open source OCR Tool Tesseract: A
Case Study. International Journal of Computer Appli-
cations, 55(10), 50-56.

Smith, R. (2007). An Overview of the Tesseract OCR Engine.
Ninth International Conference on Document Analysis

and Recognition, 2, 629-633.

8

