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ABSTRACT

Rotor blades are the most complex structural components in a
wind turbine and are subjected to continuous cyclic loads of
wind and self-weight variation. The structural maintenance
operations in wind farms are moving towards condition based
maintenance (CBM) to avoid premature failures. For this,
damage prognosis with remaining useful life (RUL) estima-
tion in wind turbine blades is necessary. Wind speed varia-
tion plays an important role influencing the loading and con-
sequently the RUL of the structural components. This study
investigates the effect of variable wind speed between the cut-
in and cut-out speeds of a typical wind farm on the RUL of
a damage detected wind turbine blade as opposed to aver-
age wind speed assumption. RUL of wind turbine blades are
estimated for different initial crack sizes using particle filter-
ing method which forecasts the evolution of fatigue crack ad-
dressing the non-linearity and uncertainty in crack propaga-
tion. The stresses on a numerically simulated life size onshore
wind turbine blade subjected to the above wind speed load-
ing cases are used in computing the crack propagation obser-
vation data for particle filters. The effects of variable wind
speed on the damage propagation rates and RUL in compar-
ison to those at an average wind speed condition are studied
and discussed.

1. INTRODUCTION

Wind energy has grown to be one of the most popular sources
of renewable energies around the world within a span of
two decades. The size and capacities of individual wind
turbines have rapidly increased over time to meet the clean
energy goals and demands (Wymore, Van Dam, Ceylan, &
Qiao, 2015). In addition to initial installation costs, main-
tenance and operation costs of wind turbines account to ap-
proximately 20-25% of the total levelized cost per kWh (El-
Thalji & Jantunen, 2012). Unlike the popular preventive and
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corrective maintenance practices, CBM minimizes unneces-
sary labor and pre-mature replacement costs due to sched-
uled maintenance practices (preventive) and expensive post-
failure repair and replacement costs (corrective) by optimiz-
ing the maintenance schedule based on the RUL, repair and
replacement costs (Gupta & Lawsirirat, 2006). RUL is salient
for CBM of components that undergo prolonged deterioration
under fluctuating loads before failure, which include blades,
tower and other mechanical components in a wind turbine.

1.1. Fatigue Damage in Wind Turbine Blades and Effect
of Wind Speed Fluctuations

Among the structural components of the wind turbines, rotor
blades are subjected to the most dynamically varying loads.
Blade damage accounts for around 23% of the total failure
events accompanied by significant downtime and replace-
ment costs (Ciang, Lee, & Bang, 2008; Florian & Sørensen,
2015). The wind turbine rotor blades consist of load carry-
ing shear webs or hollow beam laminates for flapwise and
edgewise moments along the blade and light weight core to
resist torsion and buckling. The laminate frame is made of
fiber reinforced polymer composite materials and the core
is made of foam or balsa wood and the two are typically
bonded by adhesives. The core is covered with compos-
ite laminates or gel coats for protection (Mcgugan, Pereira,
Sørensen, Toftegaard, & Branner, 2015; Al-Khudairi et al.,
2017). Although the modern wind turbine blades are de-
signed to withstand the loads for at least 20 years, there is
always a chance for external causes of damage such as from
lightening or an inherent flaw in the complex blade structure
during blade manufacture (Nielsen & Sørensen, 2017). Mul-
tiple studies have identified few hotspots (Ciang et al., 2008)
in the wind turbine blade structure with high probabilities for
damage. Fatigue crack at the blade root, maximum chord lo-
cation, 30% and 70% of blade length from root are some of
the frequently encountered fatigue crack locations that are re-
ported from experiments and simulation studies (Kong, Kim,
Han, & Sugiyama, 2006; Schulz & Sundaresan, 2002). Up-
per spar cap and its flange are also identified as the critical

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

locations depending on the pitch angle of the blade (Shokrieh
& Rafiee, 2006). Delamination, debonding and intralaminar
failure are some of the damage modes that need attention in
these locations (Lading, McGugan, Sendrup, Rheinländer, &
Rusborg, 2002).

Faults in blades if unchecked can grow in size eventu-
ally causing a catastrophic damage to the integrity of sys-
tem (Ciang et al., 2008). Condition monitoring and diagnosis
is the fundamental step in the RUL estimation of wind tur-
bine blades. With many advances in structural damage detec-
tion and diagnosis (Yao & Pakzad, 2012; Shahidi et al., 2015;
Yao, Pakzad, & Venkitasubramaniam, 2017; Gulgec, Takáč,
& Pakzad, 2017), SHM system should be capable enough to
detect and localize the faults at a minimum required stage of
evolution such that sufficient time is available to achieve eco-
nomic CBM. Numerous SHM strategies (Kirikera, Schulz, &
Sundaresan, 2007; Rumsey & Paquette, 2008; Furong Zhang,
Yongqian Li, Zhi Yang, & Liping Zhang, 2009; Kim et al.,
2014; LeBlanc, Niezrecki, Avitabile, Chen, & Sherwood,
2013; Yang, Peng, Wei, & Tian, 2017) for wind turbine blades
have been proposed, studied and tested (Dutton et al., 2003;
Kirikera et al., 2008; Ou, Dertimanis, & Chatzi, 2016; Ou,
Chatzi, Dertimanis, & Spiridonakos, 2016).

Being subjected to highly irregular loads caused by a com-
bination of turbulent wind flow, varying direction of gravi-
tational load, centrifugal loads, triggers the fatigue damage
progression in the above mentioned hotspots (Al-Khudairi et
al., 2017; Yang et al., 2017). Major cyclic loads are induced
by gravity result in edgewise bending and wind loads induce
flap-wise and edgewise bending in the blades. In addition to
the dynamic component of wind loading wind speed fluctu-
ations can expedite the damage regression. The wind speed
experienced by the wind turbines typically varies between a
cut-in speed Vin of 2 m/sec to a cut-out speed Vout of 25
m/sec (Hayat, Asif, Ali, Ijaz, & Mustafa, 2015) beyond which
wind turbine operation is halted. Weibull distribution of wind
speeds is typically observed as shown in Fig. 1. Wind speeds
can vary day to day and it is anticipated in this paper that this
can affect the estimation of RUL in comparison with that of
the estimated using a mean wind speed.

In this paper a particle filtering based prognostic procedure is
applied for RUL estimation of wind turbine blades subjected
to fatigue damage for variable wind speed loading using par-
ticle filters. The results are compared to the RULs estimated
with a constant average wind speed of 12 m/sec which is pre-
sented in a previous study by the authors (Valeti & Pakzad,
2018). The following sections discuss the RUL estimation
using particle filters followed by its application in RUL es-
timation for wind turbine blades under fatigue loading. Fol-
lowing this results of the two wind speed loading conditions
mentioned before are discussed and compared.
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Figure 1. Particle filter algorithm and estimation of RUL

2. RUL ESTIMATION

2.1. Prognosis for RUL Estimation

RUL of a structural component can be defined as the time be-
tween the last known condition to the time when it reaches
a predefined threshold condition before maintenance is re-
quired (Si, Wang, Hu, & Zhou, 2011). Prognosis is to predict
future behavior which is required for estimation of the RUL
of a deteriorating subsystem or a component (Vachtsevanos,
Lewis, Roemer, Hess, & Wu, 2006). Fatigue, being one of
the important failure modes in wind turbine blades, the abil-
ity to assess RUL considering various uncertainties and cur-
rent damage state is necessary to make confident and safe
maintenance decisions. (Newman, 1981) developed analyt-
ical model of cyclic crack growth that includes the effects of
crack closure to correlate crack growth under aircraft spec-
trum loading on aluminum alloy plate material. Several stud-
ies have been conducted for determining the RUL in wind
turbine blades through classical fatigue crack propagation
laws (Shokrieh & Rafiee, 2006; Beganovic, Njiri, Rothe, &
Soffker, 2015; Hayat et al., 2015). (Corbetta, Sbarufatti,
Giglio, Saxena, & Goebel, 2018) proposed a particle fil-
ter based Bayesian damage prognosis framework extended
to multiple damage mechanisms for fatigue life prediction
of composite laminates under co-existing matrix cracks and
delamination. Sanchez et al. (2016) (Sanchez, Sankarara-
man, Escobet, Frost, & Goebel, 2016) estimated the RUL
for a medium sized wind turbine blade using fatigue stiff-
ness degradation damage model developed for Carbon fiber
reinforced polymers (CFRP) materials. The damage model
was applied on blade root moment sensor information from
a wind turbine simulated in a high fidelity simulator FAST
v8 (Fatigue, Aerodynamics, Structures and Turbulence) and
subjected to different wind speed scenarios.

(Sikorska, Hodkiewicz, & Ma, 2011) classified prognostic
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methods specifically for RUL estimation into four categories
namely, Knowledge-based models, Life expectancy models
(stochastic and statistical), Artificial Neural Networks (ANN)
and Physical models. The physical models are the most accu-
rate of the above methods but are expensive with low range of
system applicability compared to the knowledge base meth-
ods which are on the other end of the spectrum. The ANN’s
performance on the other hand have been known to be limited
to short term prognosis. It is the uncertainties in measured
fault, definition of damage characteristics, fault propagation
model, material characterization and future loads act as im-
pediments to accurate RUL estimation. Due to these uncer-
tainties, the estimation of confidence limits along with RUL
is important. A plethora of literature is available on crack
growth modeling and RUL estimation in engineering mate-
rials for stochastic deterioration models and statistical data
driven approaches through stochastic life expectancy mod-
els (Si et al., 2011; Medjaher, Tobon-Mejia, & Zerhouni,
2012; Le Son, Fouladirad, Barros, Levrat, & Iung, 2013)
without the drawbacks from other methods. The stochastic
life expectancy models consider RUL as a statistically iden-
tical random variable and define it with a probability den-
sity function. This random variable carries the measurement,
modeling and loading uncertainties. Dynamic Bayesian net-
work models such as Markov models, Kalman filters and par-
ticle filters are some of the stochastic life expectancy models
that are popularly used in engineering prognostics (Bartram
& Mahadevan, 2013).

2.2. RUL Estimation with Particle Filters

Particle filters are essentially the Monte Carlo based nonlin-
ear Bayesian tracking methods that address the nonlinearity
in the state evolution and/or non-Gaussian noise in the pro-
cess and measurements. Particle filters are particularly useful
when the posterior distribution is non-standard or multivari-
ate (Arulampalam, Maskell, Gordon, & Clapp, 2002; Cadini,
Zio, & Avram, 2009; Zio & Peloni, 2011). Which makes the
method very much suitable for forecasting a nonlinear pro-
cess such as crack growth (Haile, Riddick, & Assefa, 2016).

Given a damage propagation process is measured until the
current time say k, the RUL estimation is performed as de-
scribed in the following three steps (Fig. 2) (M. Orchard, Wu,
& Vachtsevanos, 2005; An, Choi, & Kim, 2013). Step 1:
Damage state estimation using particle filters upto time k,
Step 2: p-step ahead prediction (xk+1 to xk+p) until reach-
ing a threshold and Step 3: RUL estimation.

2.2.1. Step 1: State Estimation

Nonlinear Bayesian tracking: Define the damage state or
crack length xk at time k with a non-linear state transition
equation fk as a function of previous damage state at k − 1
(first order Markov process assumption). Define the mea-

sured damage state with observation model hk as a function
of the state through the following state space equations Eq.
(1) and Eq. (2) (M. Orchard et al., 2005; Cadini et al., 2009;
Zio & Peloni, 2011).

xk = fx(xk−1, ωk)←→ p(xk|xk−1) (1)

zk = hx(xk, νk)←→ p(zk|xk) (2)

ωk and νk are non-Gaussian noise vectors of known distri-
butions corresponding to uncertainty in the damage process
model and measurements respectively.

Prediction Step: In the prediction step the a priori state is es-
timated using previous state distribution p(xk−1|z1:k−1) with
Chapman-Kolmogorov equation

p(xk|z1:k−1) =

∫
p(xk|x1:k−1)p(xk−1|z1:k−1)dxk−1 (3)

Update Step: The a priori state estimation p(xk|z1:k−1)
Eq. (3) is now updated to p(xk|z1:k) with observation zk as
shown in Eq. (5) using Bayes rule.

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(4)

where the normalizing constant

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (5)

The prediction and update steps are performed recursively for
state estimation.

Particle Filters In case of nonlinear processes with non-
standard posterior distributions, particle filters that are ap-
proximate nonlinear Bayesian filters that offer sub optimal
solution to the Bayesian tracking problem. The key is to use
a set of random samples with associated weights to represent
the posterior density function. These particles and weights
are updated measurement likelihood called sequential impor-
tance sampling. Bayesian tracking with a general scheme
for particle filters is explained as follows (Jouin, Gouriveau,
Hissel, Péra, & Zerhouni, 2016).

Ns particles are created based on a known initial state xo
(equivalent to initial crack length). In each iteration the
particles for the current state xik|k−1 are obtained using
Eq. (3), and weights of the particles are updated by Eq. (6)
(Arulampalam et al., 2002)

wk = wk−1
p(zk|xk)p(xk|xk−1)

q(xk|x0:k−1, z1:k)
(6)

where, q(x0:k|z1:k) is importance density function and
p(zk|xk) being the likelihood of current state measure-
ment. The posterior state pdf p(xk|z1:k) is approximated
by particles with corresponding discrete probability masses
(Eq. (7)) with particles and normalized importance weights
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Figure 2. Particle filter algorithm and estimation of RUL

w̃ik =
wi

k

Σwi
k

.

p(xk|z1:k) =

N∑
i=1

w̃ikδ(x0:k − xi0:k) (7)

Particle degeneracy is experienced after repeated iterations
which increases the variance of xn without bounds as N →
∞. This eventually results in many particles with zero
weights. For a sample size Ns degeneracy can be mea-
sured from effective sample size Neff estimated as N̂eff =

1/ΣNs
i=1(ωik)2. Particles with low weights are eliminated and

the other ones duplicated to improve the exploration space at
k+1 with resampling methods such as inverse transformation
method. To avoid unnecessary resampling at every step adap-
tive resampling can be employed that is to allow resampling
only when N̂eff < Ns.

2.2.2. Step 2: Prognosis

Using the current state estimate and updated fault growth
model parameters, long term state predictions are generated
by a recursive integration process based on importance sam-
pling Eq. (8) (M. E. Orchard & Vachtsevanos, 2009).

p(xk+p|z1:k) =

∫
p(xk|z0:k)

k+p∏
j=k+1

p(xj |xk−1)dxk:k+p−1

=

N∑
i=1

wik+p−1p(x
i
k+p|xik+p−1)

(8)

Resampling of the particles is performed whenever N̂eff <
Ns. The weights of resampled particles are kept unchanged
every step (ωik+p+1 = ωik+p). The uncertainty during prog-
nosis is propagated similar manner to the tracking stage.

2.2.3. Step 3: RUL Estimation

The residual life of a structure after fatigue crack initiation
depends on speed of crack propagation and the of size of crit-
ical defect that can be tolerated by the structure under ex-
treme loading (Benedetti, Fontanari, & Battisti, 2013). RUL
is estimated as the weighted average of the duration of time
between the end of last observation and when each of the par-
ticles reaches the threshold.

p(RUL|z1:k) =

N∑
i=1

w̃ikδ(RUL−RULi) (9)

3. RUL ESTIMATION FOR WIND TURBINE BLADES
WITH FATIGUE DAMAGE

The effect of variable wind speed in comparison with a con-
stant average wind speed on RUL estimations is studied using
a simulated wind turbine blade response. The fatigue dam-
age observations from time to time are generated using the
blade response and used in the particle filters based prognosis
method discussed above to estimate the RULs. The details
of the generation of crack propagation observations, RUL es-
timation and comparison of the results are elucidated in the
following sections.
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3.1. Generating Fatigue Crack Propagation Observa-
tions

RUL is estimated for a 5MW onshore wind turbine blade
with fatigue damage defined by National Renewable Energy
Laboratory (NREL) (Jonkman, Butterfield, Musial, & Scott,
2009; Tezduyar, Sathe, Schwaab, & Conklin, 2008) sim-
ulated in FAST v8 (Jonkma & Jonkman, 2016) a high fi-
delity aero-elastic computer aided engineering tool that simu-
lates coupled dynamic responses of horizontal axis wind tur-
bines (Valeti & Pakzad, 2018). Fatigue crack propagation
observations are generated from the stress histories of sim-
ulated wind turbine blades under varying and constant wind
speed loading (Fig. 3) for initial crack lengths, ao = 0.01,
0.03, 0.05, 0.07, 0.09 at 30% length of the blade (61.5 m)
from root. The stress histories are calculated with dynamic
response of the simulated blade subjected to turbulence for
a period of 10 min of a given wind speed. In constant wind
speed case 12 m/s is used to generate the crack observations
representing the average wind speed between Vin and Vout
wind speeds typically experienced by onshore wind farms. In
case of variable wind speed wind loading histories were gen-
erated for wind speeds between Vin and Vout. In this study
Vin and Vout are chosen as 2m/s and 22m/s respectively.
Wind speed loading is changed randomly within this range
every 24 hrs to fit a Weibull distribution as shown in Fig.
(1). The loads due start and stoppage of wind turbine, sud-
den gusts are ignored for simplicity and time conservation
during simulations. The force response history of the simu-
lated wind turbine blades at multiple locations is stored. This
is used to generate axial stress histories using the blade air-
foil geometrical properties at desired locations (Jonkman et
al., 2009).

Walker’s equation for variable loading fatigue crack propaga-
tion (Stephens, Fatemi, Stephens, & Fuchs, 2001) is used to
generate crack propagation observations with the blade stress
histories (Florian & Sørensen, 2015). A very strong simpli-
fying assumption is made in this study by modeling delam-
ination and micro-crack density propagation with Walker’s
equation. Homogeneity of the blade materials is assumed.
The change in the stress intensity factor ∆K with crack
growth is calculated from current crack length a and root
mean square stress range computed with the Rainflow count-
ing algorithm (Eq. 11) (Downing & Socie, 1982; Florian &
Sørensen, 2015).

da

dt
=

A(∆K)m

(1−R)m(1−λw)
(10)

Where,

∆K =

√∑N
i=1 ∆S2

i

N

√
πaα (11)

R =
Sminrms
Smaxrms

(12)

Table 1. Model parameters used for generating observations

Parameter Value (mean) COV Distribution
A 1.2−9 0.05 Normal
m 1.8 0.03 Normal
λw 0.8 0.01 Normal
α 1.0 – –
a variable 1.5× 10−4 Normal

A,m, λw, α are material properties, R is Stress ratio,
Sminrms and Smaxrms are the RMS values of minimum
and maximum stresses in the stress cycles and ∆S is the
stress range in each stress cycle. Parameter A is represented
in a normal distribution (Table 1) equivalent to lognormal
distribution fro convenience. The covariance of initial crack
length is shown in the table whose mean and covariance vary
with evolution of state. The fatigue crack growth observation
data is computed with the parameters in Table 1 at 30%
length of the blade from blade root.

For brevity the results for ao = 0.03m are discussed in the
following sections. Observations generated for ao = 0.03m
are shown in Fig. 4. For both variable and constant wind
speed cases. Change in crack propagation rate is observed
with change in the wind speed every 24 hours, in the variable
wind speed based observation.

3.2. Prognosis with Particle Filters

3.2.1. RUL Estimation

Particle filters use the generated observations, transition
(Eq. 13) and measurement (Eq. 14) models to generate poste-
rior distributions at the end of chosen number of observations
(50 or 100) for different loading conditions discussed above.
The uncertainty in the fatigue crack propagation process ωk
is represented by the statistical distribution of parameters as
seen in Table 1. Where as the measurement noise at time k is
νk incorporated as shown in equation as an additive Gaussian
noise (νk ∼ N (0, ak/0.0001). Each particle in estimated
posterior distribution at the end of the observations (t = k)
is projected using the state transition model until their future
states reach a predefined threshold (t = k + p). In this case
0.2m is chosen as a reasonable threshold crack length.

ak =
A(∆K)m

(1−R)m(1−λw)
dt+ ak−1 (13)

zk = ak + νk (14)

Prognosis for ao = 0.03m is shown in Fig. 5 under a constant
average wind speed of 12m/s with and particle filtering per-
formed with 50 observations. The filter estimates, prognosis
and the observations are shown in the figure. The two gray
lines in the plot indicate 5 and 95 percentile of the particles.
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Figure 3. Procedure to generate fatigue crack growth observation data in wind turbine blade
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Figure 4. Fatigue crack growth observations generated for
0.03m initial crack length under constant and variable loading
conditions

We can also notice that individual particles cross the thresh-
old at different times. The distribution of the RUL calculated
for each of the particles is shown in a histogram (Fig. 6).

Prognosis for variable wind speed loading for ao = 0.03m
is shown in Fig. 7 and the corresponding RUL distribution is
shown in Fig. 8. We can notice a change in curvature of the
estimate and 5 and 95 percentile (PI) particle limits every 24
hrs due to change in the wind speed which is also identified
in the observations.

As the RUL distributions of the particles in both wind loading
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Figure 5. Prognosis for ao of 0.03m with 50 observations
under a constant wind speed of 12m/s.

cases are observed to be non standard, a weighted average of
particle RULs is used for blade RUL estimation. RULs for
different ao are shown in Table 2 for both 50 and 100 obser-
vations used in the particle filters. One can observe that the
RUL estimations for higher ao values are lower. This is antic-
ipated because, the higher ao, the closer it is to the threshold
and requires less number of load cycles to reach it. Which re-
sults in smaller RUL. We can also observe from Table 2 that
higher number of observations used in the particle filters re-
sulted in RUL estimated closer to the expected RUL from the
simulated observations. This is intuitive because the transi-
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Figure 6. RUL for ao of 0.03m with 50 observations under a
constant wind speed of 12m/s.
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Figure 7. Prognosis for ao of 0.03m with 50 observations
under variable wind speed between 2m/s and 22m/s.

tion model with latest update (higher number of observations)
results in damage estimate closer to actual value.

3.2.2. RUL Estimate Comparison

To understand the effect of variable wind speed on the dam-
age progression, the RUL estimates from Table 2 are com-
pared for 12m/sec and variable wind speed cases for 50 ob-
servations (Fig. 9) and 100 observations (Fig. 10). The con-
stant average wind speed underestimates the RULs compared
to the variable wind speed cases. The lower RUL estimates in
case of constant average wind speed loading case is attributed
to the faster damage progression in the observations for this
case compared to variable wind speed loading. The difference
between the RUL estimates seems to decrease with ao closer
to the critical crack length or threshold for 50 observations
case. This can be justified by the fact that damage progression
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Figure 8. RUL for ao of 0.03m with 50 observations under
variable wind speed between 2m/s and 22m/s.

rate is high closer to the threshold and the compared loading
conditions do not result in much difference. The difference
of RULs for both the wind speed loading cases is within a
range of 70 to 40 hrs which is 2 to 3 days in the maintenance
schedule of wind farm.

4. CONCLUSIONS

Particle filters were used to estimate the RUL of wind turbine
blades with different lengths of initial cracks at 30% length
from blade root for constant wind speed and variable wind
speed loading conditions and compared. The following con-
clusions were drawn as a result of this study:

1. The variable wind speed results in a less conservative es-
timate of RUL of wind turbine blade in comparison with
constant average wind speed of 12 m/s, in0line with the
observations generated for each of the cases. The differ-
ence of RULs for both the wind speed loading cases is
within a range of 70 to 40 hrs which is 2 to 3 days in
the maintenance schedule of wind farm. This should be
studied for different average wind speeds depending on
the wind speed distribution of a particular farm to gener-
alize the results.

2. The difference between the RUL estimates decreases
with ao closer to the critical crack length or threshold

Table 2. RUL Estimations (hrs)

ao (m) 50 observations 100 observations Observations
12 m/s Var 12 m/s Var 12 m/s Var

0.01 666 745 608 677 594 672
0.03 426 476 368 424 397 466
0.05 306 346 248 272 297 352
0.07 221 238 164 216 229 268
0.09 159 171 102 141 176 204
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Figure 9. Comparison of RUL of different ao under constant
wind speed and variable wind speed with 50 observations
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Figure 10. Comparison of RUL of different ao under constant
wind speed and variable wind speed with 100 observations

for 50 observations case for different loading conditions.
This can be justified by the fact that damage progression
rate is high closer to the threshold where the loading con-
ditions chosen for the study did not result in very differ-
ent RULs.

3. Higher number of observations result in better prognosis
and RUL estimation.

4. Particle filters address the nonlinearity in the damage
propagation model and the uncertainty in the model pa-
rameter definition which makes then very much suitable
for prognosis of fatigue damage in wind turbine blades.
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