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ABSTRACT 

The air traffic control (ATC) system is critical in maintaining 

the safety and integrity of the National Airspace System 

(NAS). This requires the information fusion from various 

sources. This paper introduces a hybrid network model called 

the Bayesian-Entropy Network (BEN) that can handle 

various types of information. The BEN method is a 

combination of the Bayesian method and the Maximum 

Entropy method. The Maximum Entropy method introduces 

constraints and is given as an exponential term added to the 

classical Bayes’ theorem. The exponential term can be used 

to encode extra information in the form of constraints. The 

extra information can come from human experience, 

historical data etc. These knowledges, once written in a 

mathematical format, can be incorporated into the classical 

Bayesian framework. The BEN method provides an 

alternative way to consider common data types (e.g., point 

observation) and uncommon data types (e.g., linguistic 

description for human factors) in the NAS. The reported work 

is demonstrated in two example problems. The first example 

involves an air traffic control network model and the BEN 

uses information from various sources to update for the risk 

event probability. The second example is related to the 

prediction of the cause of runway incursion. A network 

model studying different sources of error is used to make 

predictions of the cause of runway incursion. The training 

and validation data is extracted from existing accident report 

in the Aviation Safety Reporting System (ASRS) database. 

The results are compared with that of the traditional Bayesian 

method. It is found that the BEN can make use of the 

available information to modify the distribution function of 

the parameter of concern.  

1. INTRODUCTION 

The worldwide air traffic has seen a continuous increase in 

the past decades (Strohmeier, Schäfer, Lenders, & 

Martinovic, 2014). This puts a heavy burden on the air traffic 

management (ATM) for maintaining the safety of NAS. 

While a large portion of the air traffic accident is due to 

human error, human performance has been always 

considered as a critical influencing factor for ATM (Rodgers, 

2017). The Federal Aviation Administration (FAA) and other 

organizations have been heavily investigating in this research 

area. Since humans are irreplaceable in the air traffic control 

(ATC) system due to their ability of quick reactions to 

unusual scenarios (Rognin, Grimaud, Hoffman, & Zeghal, 

2001). The NextGen is looking for a computer assistant 

working along with ATC controllers to monitor and maintain 

the safety and predict accidents (Martin et al., 2016). The 

information fusion is critical in achieving this goal. 

Bayesian updating is one of the most popular method in 

handling information. It has been extensively applied in 

engineering problems for uncertainty and reliability analysis 

(Peng et al., 2013)(Peng et al., 2012). It is a robust and well-

developed tool to handle point data based on the Bayes’ 

theorem. The Bayes’ theorem is used to describe the 

probability of an event based on some existing knowledge of 

related events. The posterior probability is expressed as a 

proportion of the product of the prior probability and the 

likelihood function (Bayes & Price, 1763). Bayesian network 

is a probabilistic graphic model based on the Bayes’ theorem. 

It interconnects the variables that potentially has 

dependencies through a direct acyclic graph (DAG). A DAG 

is a graphic with variables as nodes and connected edges 

represents the dependency between the variables. It is often 

used in modeling the causal relationship between variables as 

it can infer for the probabilities in the network according to 

some existing knowledge.  

While the Bayesian method behaves excellent in handling 

point data and observations, there has been a lot of existing 
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studies in introducing extras into the Bayesian framework. 

One research focuses on updating with fuzzy range data 

(Sankararaman & Mahadevan, 2011). It uses an integral over 

the range data as the likelihood function to represent the 

possibility of the range information. (Graca, Ganchev, & 

Taskar, 2008) minimizes Kullback-Leibler (KL) divergence 

between the prior and posterior under constraint. The KL 

divergence is solved using expectation maximization (EM) 

algorithm for the posterior. A regularized Bayesian method 

was presented in (Zhu, Chen, & Xing, 2012). It puts 

constraints on the model posterior given data-dependent 

information. The method was derived from a posterior 

regularization framework (Ganchev & Gillenwater, 2010) 

which is used for structured, weakly supervised learning to 

express constraints on the latent variables. In this paper, we 

introduce the Bayesian Entropy network (BEN) model to 

encode extra information that can be derived from various 

sources. The method uses the updating rule from the 

maximum entropy (ME) method and combines it with the 

classical Bayesian network.  

The ME method was firstly introduced in (Jaynes, 

1957a)(Jaynes, 1957b) as an alternative updating method for 

calculating posterior given new evidence. It was found that 

the Bayes’ rule is merely a special case of the ME method 

(Caticha & Giffin, 2006). Comparing with the classical 

Bayesian theorem, the target posterior in ME method has an 

additional exponential term, which contains the constraint 

information. The constraint could be a statistical moment 

information (Giffin & Caticha, 2007) and range information. 

The method has been successfully applied in (Guan, Jha, & 

Liu, 2012) for single parameter updating in fatigue problem 

and in (Wang & Liu, 2018) for classification task.  

In this paper, we explore the application of the BEN method 

in modeling ATC systems and add in human perception 

information in the form of constraints. Comparing with the 

current risk prediction approaches which mostly rely on 

human judgements (Roychoudhury et al., 2016), the BEN 

method can introduce an automated, robust and easy way of 

handling information to predict accidents. The rest of the 

paper will be organized as follows: In the next section, the 

ME method will be reviewed. The derivation for the ME 

method given moment and range constraints will be 

introduced. In section 3, two demonstration examples will be 

discussed. One showed an imaginary air traffic control model 

for predicting risk. The model used information from various 

source to infer for the probability of risk. Another example 

used the features extracted from ASRS reports involving 

runway incursion accident to build a network model. The 

goal is to use this feature information to classify the cause for 

runway incursion accident. Comparing with the current 

method used in NAS system for predicting accidents, the 

BEN can achieve an automated process and can incorporate 

human knowledge at the same time. The last section will 

provide conclusions and future work. 

2. THE BEN FRAMEWORK 

This section will discuss the formulation of the BEN 

framework. First, the ME method will be briefly reviewed. 

Followed by the derivation given moment and range 

constraint.  

2.1. Brief review of the maximum entropy method 

The ME method was originally developed in (Jaynes, 1957a) 

to calculated probability with information as constraint. 

Later, it is found in (Caticha & Giffin, 2006) that the ME 

method can be used as the Bayes’ rule. It can use both data 

observation and moment information to update for a posterior 

probability (Giffin & Caticha, 2007). The entropy is defined 

as the negative of the KL divergence between the target 

probability P(θ) and the prior Q(θ) as: 
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The integral is evaluated over the entire domain of the 

parameter θ. The idea of the ME method is to maximize the 

entropy term under constraints. The form of the constraint 

may vary depending on the information given. For example, 

in a scenario where the parameter θ is being updated 

according to an indirect observable x, the observation x’ can 

be expressed as a constraint:  

 ( ) ( , ) ( ')p x p x d x x  


     (2) 

where p(x, θ) is the joint probability distribution function for 

x and θ and p(x) is the marginal of x. δ is the delta function. 

The entropy, in this case, is between the new joint probability 

function p(x, θ) and the old one q(x, θ): 
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In addition to the constraint in Eq. (1), the integral of the 

probability function over the domain is unity. This gives a 

normalization constraint:  

  ( , ) 1p x dxd 


   (4) 

To maximize the entropy under these two constraints, we can 

use the Lagrange method: 
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where α and λ(x) are Lagrangian multipliers. The variation of 

the Lagrangian is zero ( 0 L ) would give the optimal 

solution to p(x, θ).  This yields to a solution:  

 
1 ( ) ( )( , ) ( , ) ( , )x xp x q x e q x e          (6) 

In Eq. (6), 
1e  

 can be regarded as a normalizing constant. 

By substituting Eq. (6) back into the constraints in Eq. (2) and 

Eq. (4), we can solve for the analytical form of the new joint 

probability function:  
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where ( )Xq x  is the marginal distribution for x. Hence, the 

posterior of θ can be calculated by integrating the joint over 

the domain of x. 
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Equation. 8 is exactly the Bayes’ rule! 

2.2. ME method with moment and range constraint 

In addition to dealing with point data, the ME method can 

introduce extra information on top of the classical Bayesian 

method. One type of information that is commonly available 

is the statistic moment information. This type of information 

may come from the expert opinion or empirical data. The 

traditional Bayesian method cannot handle these data easily, 

but the ME method can incorporate them using a constraint. 

Following the above derivation, we now have:  

 ( , ) ( )p x g dxd G  


   (9) 

Equation (9) expresses the expected value for function g(θ) is 

equal to G. ( ) ng    represents the nth order moment 

constraint. With the normalization function in Eq. (4), we can 

form a Lagrange function with Lagrangian multipliers α, β: 
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Using the similar approach, the new joint probability function 

is given as:  

 
1 ( ) ( )( , ) ( , ) ( , )g gp x q x e q x e            (11) 

β can be analytically solved by substituting Eq, (11) into the 

constraint in Eq. (9) given specific form of the distribution 

function and the constraint type.  

When both moment constraint and observation data were 

available, the Lagrange function includes the constraint in 

Eq. (2), (4) and (9). The solution for the posterior for 

parameter θ can be expressed as:  

 

1 ( )

( )

( ) ( | ')

( | ')

g

g

p q x x e

q x x e

 



 

 



  

 
 (12) 

From Eq. (12) we can clearly see that the result from ME 

method has an additional exponential term added to the 

Bayes’ rule. The exponential term includes information 

introduced by Eq. (9). When such information is not 

presented, 0   and Eq. (12) returns the Bayes’ rule.  

The statistical moment information is one way to present 

existing knowledge about a parameter. Sometimes there 

could be range information on the parameter of concern. Such 

as the definition or the design limit of a parameter should fall 

in a certain range. Some research work dealt with this type of 

information by assuming bounded priors such as Beta 

distribution. But the assumption would lose the generality for 

the shape of the distribution. In the ME framework, we can 

encode such information in the form of a constraint. Suppose 

the parameter θ should fall in the range from a to b. This piece 

of information can be written as:   
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Along with the normalizing constraint in Eq. (4), it restrained 

the probability function on the region between a to b for θ. 

Again, a Lagrange function can be written with the 

constraints in Eq. (4) and (13) with Lagrangian multipliers α 

and γ: 
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The variation of the Lagrange function equals 0 yields a 

piecewise solution to the new joint probability function:  
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Substituting Eq. (15) back into the constraints in Eq. (4) and 

(13), the final solution is given as a truncated distribution 

over the domain of θ:  
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where Qθ(·) is the cumulative density function (CDF) of the 

prior. The key point here is that we did not make any 

assumption about the prior, the ME method is modifying the 

distribution function according to the given constraint 

information. 

2.3. The Bayesian-Entropy network (BEN) framework 

Based on the above derivation, it can be clearly seen that the 

ME method can provide an alternative way to update for 

posterior probability with a richer variety of information. The 

BEN framework uses the same topology as a Bayesian 

network and, instead of the classical Bayesian updating rule, 

uses the ME algorithm to calculate the posterior. The main 

idea of the BEN framework is to encode extra information 

based on the Bayesian method. It can be think of as two parts, 

which is used to handle point observation data, and an extra 

exponential term that can impose constraint over the 

Bayesian posterior. The constraint information can come 

from human perception or empirical knowledge, such as the 

mean value of a variable (moment information), the 

correlation between two variables (likelihood information) or 

the defined range of a parameter (range information). Since 

the method only adds an exponential term to the Bayesian 

theorem, it can be incorporated into any existing Bayesian 

applications such as classification, updating and inference 

and does not add computational cost.  

3. APPLICATION OF BEN IN AIR TRAFFIC CONTROL 

This section gives two examples of the application of the 

BEN method in air traffic risk assessment. The first example 

demonstrates the ability of BEN to infer the risk probability 

using various sources of information. It is only a 

demonstration example and does not represent any research 

work or real-life scenario. The second example involves a 

Bayesian network model that examines the cause of runway 

incursion accident. The network was built with feature data 

derived from 37 ASRS report. Details will be discussed 

below.  

3.1. BEN in ATM risk control 

In this example, we investigate in the application of the 

proposed method in air traffic risk assessment. Figure 1 

showed a network model built to evaluate the risk of an 

aircraft. The risk is related to two factors: the speed of the 

aircraft and the pilot performance. The speed of the aircraft 

can be affected by weather (e.g. wind speed, rain) and 

visibility. The weather and visibility are interconnected 

indicating the potential correlation between the two variables. 

The pilot performance is a measurement of the pilot status. 

The experience of the pilot and the rest (sleeping hours) of 

the pilot prior to the flight are two influencing factors that 

contribute to the pilot performance. 

 

Figure 1. The topology for the ATC risk model. 

 

The distribution for each variable in the network model is 

listed in Table 1. Risk and weather are considered as discrete 

node and the others are modeled as continuous. Risk is a 

binary node with 0 and 1 correspond to safe and accident, 

respectively. Weather can take four discrete values, each 

representing four possible weather conditions, such as sunny, 

cloudy, rain and snow. The continuous nodes are all modeled 

as Gaussian nodes. The Pilot can be a reference value for the 

evaluation of the pilot performance. Experience could be the 

years of experience of a pilot driving the aircraft. And rest is 

the sleeping hours of the pilot prior to the departure.  

 
We assumed three scenarios to update for the risk probability: 

1. An observation of Rest=6 is made about the pilot. 

This scenario uses only the Bayesian updating.  

2. In addition to the observation of Rest=6, a first order 

moment (mean) of rest=8 is given. This scenario 

will use the BEN to incorporate this moment 

information. 

3. This scenario includes the observation of Rest=6, 

and a new relation between the pilot performance 

and the rest hours expressed as a known function

Pilot (Rest)f . The known function is specified as

Table 1. Parameters and its distribution 

Node 

name 
Distribution type 

Parameters 

μ σ 

Risk 
Discrete 

(2 values: 0 1) 

[0.9, 0.1] 

Speed Normal 51 20.5 

Pilot Normal 82 20.5 

Weather Discrete 

(4 values: 0 1 2 3) 
[0.3, 0.3, 0.2, 0.2] 

Visibility Normal 10 1 

Experience Normal 30 25 

Rest Normal 7 1 
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Pilot (Rest) 10 Restf   . BEN will use this 

information to change the likelihood between the 

two variables. 

The three pieces of information will be fused into the network 

model via the BEN method and update for the risk probability 

(Figure 2). 

 

 
Figure 2. The topology of the ATC model with the 

information in three scenarios. 

 

The updated result for the marginal distribution of Rest can 

be seen in Figure 3. 

 
Figure 3. The posterior for Rest in the first two scenarios 

 

It can be seen that when updating with only point observation 

(first scenario), the posterior distribution is shifted towards 

the observed value and variance decreased. While the 

posterior from BEN has a similar shape but the mean value 

was shifted to the value specified by the mean constraint.  

The update will propagate in the network along the edges. In 

the third scenario, a new correlation between Pilot node and 

Rest node is introduced as Pilot (Rest) 10 Restf   . Since it 

is a constraint imposed on the likelihood function, it is written 

as: 

 (Pilot | Rest)Rest Pilot 10 Restp d     (17) 

The solution given this constraint is given as: 

 2

10 Rest
(Pilot|Rest) (Pilot|Rest)exp( Pilot)p q





 


 

(18) 

where q is the old likelihood function and μ and σ are the 

distribution parameters (mean and variance) for the old 

likelihood function. Equation. (18) is used for updating in the 

third scenario. The results for the updated marginal 

distribution for Pilot and Risk can be seen in Figure 4. 

 

 
a) 

 
b) 

Figure 4. The marginal distribution for a) Pilot and b) Risk 

 

To interpret the result, we can think of the observation 

information comes from a recording device that tracks the 

pilot’s sleeping time. The moment constraint can be 

understood as the tracking device may be malfunctioned and 

we tend to believe that the pilot has followed his regular 

schedule for 8 hours of sleep. The information in the third 

scenario can be a new research finding of the correlation 

between pilot performance and pilot sleeping hours. From the 

result, we can see that: for the first scenario, the risk 

probability increased due to the observed low resting hours. 

For the second scenario the risk probability decreased since 

we tend to believe that the pilot had enough rest. The risk 

probability has a sudden increase in the third scenario 

because the constraint introduced a positive correlation. This 

acted as a penalty for the observed low sleeping time. Hence 

the risk probability increased.  

This example illustrated the ability of BEN to incorporate 

various sources of information into a network model to 

update for risk probability. According to the result, BEN can 

take advantage of the extra information to modify the 

probability distribution. 
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3.2. BEN for runway incursion 

Runway incursion is defined as the incorrect of the presence 

of aircraft in landing and take-off area (Wilke, Majumdar, & 

Ochieng, 2015). It can cause critical accidents and property 

damage. This example explores a Bayesian network model to 

classify the cause for runway incursion during take-off. The 

network topology is built using features extracted from ASRS 

runway incursion accident report. The features are extracted 

by manually read the accident report. A total of 331 report 

involving runway incursion between 2014 and 2017 have 

been found. Due to the heavy workload of analyzing the 

report only a small number of reports were studied and 37 out 

of these reports were used in this example. It is found that, in 

the 37 reports, the runway incursion is caused by 

communication error between the pilot and ATC tower. 

Three types of a runway incursion is identified: 

1. Runway crossing without clearance,  

2. Taxi across hold-line without clearance, 

3. Attempt take-off by ignoring Line Up and Wait 

(LUAW).  

Four types of communication error can be found in the 37 

reported cases, which are:  

1. ATC operator issues ambiguous taxi clearance (taxi 

clearance communication error on ATC side) 

2. Pilot miss readback on taxi clearance (taxi clearance 

communication error on the pilot side) 

3. Pilot miss readback on runway crossing clearance 

(runway crossing communication error) 

4. Pilot miss readback on LUAW clearance (LUAW 

communication error) 

In addition to the communication error, some attributes in 

these 37 reports were extracted as basic features, they are: 

number of runways in the airport, the runway layout of the 

airport (whether there is intersection or not), number of 

people on the same radio frequency and the time of the day 

at the accident. Based on these available features, a network 

model for runway incursion classification is built in Figure 5. 

The network assumes that the four basic features are 

independent from the occurrence of runway incursions but 

can be a contributing factor of the communication error. The 

four basic features are all assumed to be independent with 

each other.  

 
Figure 5. Bayesian network for runway incursion 

 

A random train-test split is done to the 37 data instances. The 

training set is used to calculate the conditional probability 

table for the network and the test set is used to validate and 

test the classifier. The test was done using only the four basic 

features to infer for the communication error type and runway 

incursion. Due to the limited data, a Bayesian network cannot 

achieve plausible accuracy. 

When reading the accident report, it is found that there are 

certain patterns for the correlation between variables, for 

example, when the number of people on the radio frequency 

is less, taxi clearance communication error is more likely to 

happen on the pilot’s side. Such information may come from 

an experienced operator, or a report reviewer who has read a 

lot of the accident report and was able to generate this type of 

empirical knowledge. These knowledges can be encoded into 

the network using BEN method as the entropy information.  

The entropy information included in the BEN model are: 

1. At night, a runway crossing communication error is 

more likely to happen. 

2. When the number of people on the radio frequency 

is less, a taxi clearance communication error is more 

likely to happen on the pilot’s side. 

3. When the taxi clearance communication error is on 

ATC side, the cause for runway incursion is more 

likely to be cross runway without clearance. 

4. When the taxi clearance communication error is on 

pilot side, the cause for runway incursion is more 

likely to be taxi across runway hold line. 

5. LUAW communication error can only lead to and is 

the only reason for attempt take-off without 

clearance. 

Since the communication error and runway incursion are all 

categorical nodes, integer values such as 1, 2, 3, 4 are 

assigned accordingly. The above constraints are all 

considered as mean constraints (1, 2, 3, 4) or range 

constraints (5). The training was done in a similar manner as 

the Bayesian approach. With the encoded constraints, the 

testing accuracy is plotted comparing with the accuracy from 

the Bayesian method in Figure 6.  

 

 

 
a) 
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b) 

Figure 6. The average accuracy of classification for a) types 

of communication error and b) cause for runway incursion 

 

Although the accuracy is still not satisfying, due to the 

encoded constraints, the BEN has around 10% improvement 

comparing with the classical Bayesian method. Since the lack 

of data, the result might not be representative. The author will 

keep working on analyzing reports to extract more data for 

sufficient training and testing set.  

The state-of-the-art method for accident prediction in the 

NAS is mostly replying on human operator, such as Flight 

Risk Analysis Tool (FRAT) (FAA, 2007) and Safety 

Management System (SMS) (FAA, 2015). Human are 

subject to fatigue and performance would vary for different 

operator. While the application of BEN can achieve an 

automated prediction scheme that can be robust and reliable.  

 

4. CONCLUSION 

The paper introduced BEN, a hybrid network model for 

updating probability using data from various source. The 

method has two parts: a Bayesian part that can be used to 

handle the point data observations and an Entropy part that 

encodes extra information using an exponential function. 

When there is no other information, the exponential term is 

automatically dropped. According to the demonstrative 

example, the BEN can take advantage of different types of 

information that is not easily handled with a Bayesian 

approach by altering the distribution function of the variable. 

The second example illustrated that the BEN method can be 

used to encode human knowledge into a network system. It 

can be concluded that using the BEN method, we can build a 

network incorporating human knowledges (moment 

constraint), empirical information (range constraint) and new 

correlations (likelihood constraint). This can achieve the 

information fusion for monitoring the NAS system. The 

current approaches for identifying potential hazards in the 

NAS is mostly based on human, such as pilot, ATC controller 

etc. According to the demonstrated examples, the application 

of BEN in the NAS can achieve an automated process for 

accident predictions.  

The proposed method provides an easy way of information 

fusion from various sources. The entropy term can be 

analytically solved given specific form of the distribution 

function and the constraint. The BEN method does not add 

computation complexity compare to the Bayesian approach. 

Any method Based on Bayesian framework can be easily 

incorporated with the BEN method.  

The BEN is proven to be useful with information other than 

point data/observations. How the method will behave in more 

complex and largescale network needs further research. The 

author will continue to work on the runway incursion 

problem to generate more data and find more representative 

features to justify the network model in classifying the cause 

of runway incursion 
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