
 

 1

Se Un Park et al. This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 

Towards Automated Condition Monitoring of Blowout Preventer 
Wellbore Packers 

Se Un Park1, Rajesh Kumar Bade2, Daniel Barker3, and Daniel Edgardo Viassolo4 

1,4Schlumberger, 1430 Enclave Pkwy., Houston, TX, 77077, USA 

spark4@slb.com, dviassolo@slb.com  

2,3Schlumberger, 4601 Westway Park Blvd., Houston, TX 77041, USA 

rbade@cameron.slb.com, dbarker3@cameron.slb.com  

 
ABSTRACT 

According to Bureau of Safety and Environmental 
Enforcement (BSEE), in 2017 a total of 45 out of 59 rigs 
operating in the Gulf of Mexico reported component failures 
of well control related equipment. The aftermath of the oil 
spill from the Deepwater Horizon rig provides stark 
illustration that acceptance of the equipment failure status 
quo is untenable. In this work, the authors propose novel 
automated strategies to monitor the health of blowout 
preventers (BOPs) on offshore drilling rigs. Using physics-
based models, we demonstrate computational detection of 
pressure tests by identifying characteristic features in time-
series pressure data. After detection, we present a 
methodology for extracting features relevant for prognostic 
health monitoring, including pressure decay and hold 
durations. Augmenting these computational models with 
domain knowledge from BOP experts, we produce health 
indices (HIs) for the respective equipment as the output. In 
addition, we demonstrate the optimized enumeration and 
identification of possible pressure test plans for BOPs in 
different combinatorial configurations. By combining our 
novel detection approach with health indices and automated 
test planning, this work contributes to prediction and 
amelioration of well control equipment failures on offshore 
drilling rigs. 
 

1. INTRODUCTION 

A blowout preventer (BOP) is a safety-critical drilling rig 
component used primarily during exploration, development 
and workover phases of an oil and gas field. While a column 

of mud serves as primary means of controlling wellbore 
pressure during drilling, a BOP forms the final layer of 
protection that prevents a loss of well-control (LOWC) event 
from becoming a hazardous blowout. A study by Per Holland 
and the Bureau of Safety and Environmental Enforcement 
(2016) reports that approximately 60% of LOWC events 
occur during drilling operations. 

A BOP is placed on top of wellhead with drilling equipment 
going through it into a well. Depending on operating context 
of LOWC event, a BOP must either isolate wellbore pressure 
by sealing around a tubular or drill pipe (Figure 1) or shear a 
tubular before isolating wellbore pressure. The task of 
isolating wellbore pressure from the drilling rig is 
accomplished by hydraulically energized elastomeric 
components referred to as ‘packers’ or ‘seals’ (Figure 2). For 
operational flexibility and redundancy, multiple BOPs are 
integrated vertically to form a ‘BOP stack’ (Figure 3).   

A reliability study by American Bureau of Shipping and the 
Bureau of Safety and Environmental Enforcement (2013) 
indicates that approximately 50% of BOP stack failures are 
attributable to BOPs, while remaining are due to the BOP 
control system and other ancillary equipment. Due to its 
safety service, BOP failures do not become obvious until an 
operational demand is placed upon it.  

Periodic tests of BOP stack allow drilling contractors to 
maintain and control the integrity of its functional service, as 
suggested by Martins, Cardoso, Tammela, Colombo, and 
Matos (2018). One type of such tests is a pressure test. A 
pressure test simulates a ‘kick’ (undesired increase in 
wellbore/annulus pressure) to assess ability of BOP packers 
to isolate anticipated well pressure. Because high pressure 
flowing fluid used in the test can erode metallic components 
and wear-out elastomeric components such as rubber side 
packers in rams in a BOP stack, typical aging effects of 
performance degradation over time are expected in 
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mechanical properties of the system. The aging effects 
manifest in form of leaks of wellbore fluid past well-bore 
packers. The integrity of these components must be assessed 
regularly by simulating pressures on them. For a pressure test, 
the testing engineers temporarily stop regular rig functions 
and close a combination of annular preventers, rams, and 
valves to apply pressure within a BOP system and measure 
the pressure changes to assure that the BOP can hold the 
specified pressure. Towards this, BOP stack is instrumented 
with pressure and temperature (P/T) transducers exposed to 
wellbore.  

 

 

 

Figure 1. Blowout Preventers (BOP) that seal around drill 
pipe: Pipe Ram Preventer (above) and Annular Preventer. 

(below) 

 

     

 

Figure 2. Wellbore Packers isolate pressure from the well in 
event of a ‘kick’. Packers during normal operation (above) 
and Packers during test or ‘kick’(below). 

In this work, to detect any sign of failures upon pressure 
holding capacity in a component of a BOP stack, an 
automated solution within a prognostic health monitoring 
(PHM) framework is proposed, in accordance with 
Vachtsevanos, Lewis, Roemer, Hess, and Wu (2006), by 
using the above-mentioned pressure test data. A method that 
can identify and characterize pressure tests by searching the 
starting and finishing points of the test considering realistic 
physical constraints, is developed. Primary data consists of 
statuses of subsea BOP stack components and pressure as 
measured by a P/T sensor exposed to annulus of a BOP stack. 

 

Figure 3. BOP Stack with 19x components: 1x Annular, 2x 
Shear Ram, 3x Pipe ram, 11x Gate valves and 2x Line 
isolation valves. Pressure & Temperature Transducer 

mounted under Lower Pipe Ram (LPR) and under Choke 
Isolation valve (CIV). 

 

The method also identifies which components of a BOP stack 
are being tested, because it comprises of numerous 
components such as annular BOPs, ram BOPs and fail-safe 
valves.  This enables classification of test configuration and 
benchmarking of test performance for condition monitoring. 
Furthermore, a set of complete pressure tests must cover 
testing of all components by considering combinations of the 
closed, pressure-holding components. This needs to be 
planned to efficiently perform pressure tests of all 
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components and avoid redundant tests. As testing often 
precludes further operational activities, test plan optimization 
is desirable to drilling contractors and operators to minimize 
non-productive time (NPT) on the rig. 

With the goal of automating identification of tested 
components as well as for test planning, a simulator based on 
the specific structure of a BOP stack and physical constraints 
of each component is proposed. As a practical example, a 
pressured line may have multiple valves, e.g., inner/outer and 
upper/lower valves, and two sides of each valve should be 
tested to determine the health states of subcomponents; e.g., 
the right side of the subcomponent in upper inner choke 
valve. Also, pressured annular preventers and ram preventers 
typically have one directional resistance in pressure by 
design, i.e., pressure coming from the wellbore. Under the 
known states of BOP stack components, the simulator can 
determine lines and cavities that are pressurized, components 
tested, pressurized sides of tested components, and 
components whose status is irrelevant. The simulator 
discussed herein can be used in automation of test-planning.  

2.  METHODS 

2.1. Detection of Pressure Tests  

2.1.1. Pressure Data Processing 

For the given BOP structure considered in this work, there 
are two P/T (pressure and temperature) sensors: pressure 
sensor below the lower pipe ram (LPR) and above the 
wellhead connector, is referred to as LPR Pressure. The other 
sensor is located on the choke line. LPR Pressure data has 
better exposure to the pressure of the primary rams in the 
BOP stack because of the proximity and direct connectivity 
to the wellbore (For example, see Figure 3). While Maximum 
allowable working (rated) pressure of the BOP stack is 690 
bar, the range of pressure sensors used is 0-1400 bar. 

The pressure data from the LPR sensor is recorded with 
proper time stamps, but data was observed to be noisy or 
erroneous. The erroneous data, such as negative pressure or 
pressure values greater than the maximum working pressure 
of the BOP, can be removed. Other erroneous data are 
difficult to directly remove, but instead can be treated as 
noisy data points in time series data given pressure tests are 
characterized by shallow decay over 10-20 minutes duration. 
For denoising, a simple filtering approach is used.  

Figure 4 illustrates one example of raw LPR Pressure data. 
Red and black dots indicate starting and ending points of high 
pressure tests, respectively. The integer numbers above the 
black dots show decay levels in bars from the starting points, 
which will be later used as a feature. 

 

 

Figure 4. An example of raw BOP stack pressure test data. 
(x-axis: time, y-axis: wellbore test pressure in bars)  

Another issue of the pressure data may include resolution of 
pressure and sampling intervals or the combination of the 
two. This is especially noted during pressure tests where the 
differential pressures are small leading to sparse data sets. 
Irregularly sampled times series data is difficult to analyze or 
apply standard signal processing algorithms. The data is thus 
resampled or interpolated for further processing if needed.  

2.1.2. Identification of Characteristic Points of Pressure 
Tests 

The characteristic points of pressure tests include starting and 
ending points of pressure test hold-period. The test pressure 
pattern is mostly rectangular. This pattern has a seemingly 
flat top, but in fact has a small negative slope during the tests. 
The transitions of test-pressure (increase or decrease) are 
sudden and manifested as near-vertical lines in the time scale 
of hours as seen in Figure 4 and 5. 

Limiting the prototypical pattern to a rectangular one, the first 
order differentials, as instantaneous or point-wise slopes, are 
ostensibly sufficient to identify the characteristic points. 
However, point-wise differentials are noisy with large 
variations because of the nature of the noise and data. 
Therefore, evaluation of the differentials over a larger fixed 
period-of-time stabilizes the value. 

This approach is applied to identify the points in high 
pressure (HP) tests. Because most of the HP tests follow low 
pressure (LP) tests, the method is reapplied for the LP test 
identification. Figure 5 presents the detection results. We call 
the LP and HP, immediately following the previous LP, a unit 
pressure test. Each unit pressure test detected here 
corresponds to a unique configuration of BOP stack 
equipment. 
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Figure 5. Detection and Identification of Low Pressure and 
High Pressure tests. (x-axis: time, y-axis: wellbore test 

pressure in bars)  

 

2.2. Feature Evaluation and Health Index 

Pressure test criteria identified by the American Petroleum 
Institute (API) standards (2012) or drilling contractors are 
evaluated as part of feature set. These features include hold 
duration between the starting and ending points of pressure 
tests and global decay (pressure difference from the ending 
to the starting points of tests). As a primary function of a BOP 
is to isolate pressure from well, wellbore pressure decay rate 
(rate of decrease in well bore pressure) lends itself well for a 
robust indicator to functional effectiveness of BOP wellbore 
packer. 

Using the method and evaluated points, other features such 
as local decays defined by specific time-windows, the size of 
window in terms of time and the number of data points within 
the window, and statistics (mean, standard deviation) of data 
points within the window are evaluated.  

Local decay and statistics are defined within a moving, size-
varying window as follows. Extend the window 
incrementally by covering a new data point in the time 
domain based upon a preselected datum and for each window 
repeatedly evaluate the local decay, slope, mean, standard 
variation, the number of data points within the window, and 
the window size in time. Other statistics, such as 
instantaneous slope or point-wise first order differentials, 
were experimentally attempted but ultimately not used 
because they show erratic, noisy behavior or are 
noninformative. Also, expected pressure ranges during tests 
seem wide enough for the data, i.e., the given HP test data fit 
within the specified range of 230- 350 bars, thus are 
noninformative. 

Health indices are defined as the following. They represent 
how much the pressure test results conform to a minimum, 
required specification using the information of maximum 
allowed decay and minimum hold duration. 

HI(s) = max(Ts - s,0) / |Ts| , 

HI(d) = max(Td - d, 0) / d , 

Where s is a slope (negative decay over time), Ts is the 
specified threshold for the slope, d is duration time of the 
pressure hold, and Td is the threshold for the duration time of 
the pressure hold. The overall health index is the sum of the 
slope and duration health indices, HI(s) and HI(d), 
respectively. Refer Figure 6 as examples of several health 
indices evaluated from different slopes and hold durations. 

HI = HI(s) + HI(d) 

The threshold values are typically given by various industrial 
regulatory guidelines, government agencies, or drilling 
contractors’ prior knowledge. The defined health indices 
imply that for the perfect healthy state, HI = 0 and is always 
non-negative and larger as the health becomes worse. The 
perfect healthy state covers the cases where the duration and 
slope of the pressure hold period are less than the 
corresponding threshold values. Note that the slopes and 
slope threshold are expected to be negative as the pressure 
tends to drop over time during the hold period of pressure 
test. The pressure drop can be simply modeled in either 
following way; if the pressure drop rate is proportional to the 
difference between the contained high pressure and outside 
pressure, i.e., dP/dt = – k P(t), with a constant k, pressure P, 
and time t, the pressure has exponential decay, P(t) = P0 e-kt, 
with the initial pressure P0. If the pressure drop rate is 
constant over time due to the system control, i.e., dP/dt = – k, 
then the drop is simply linear, P(t) = P0 – kt. Under the 
resolution and range of data used here, the second model fits 
well and the pressure change model can be assumed linear.  

In Figure 6, example health indicators are evaluated with a 
slope threshold of 1.3 bar/minute (absolute values are 
considered) and hold duration threshold of 12 minutes. If the 
absolute value of a slope gets larger than the threshold, HI 
increases from zero. If the hold duration is less than the 
threshold, then the corresponding HI is positive. 

2.3. Configurations 

Because every BOP component is not equipped with a 
pressure sensor, there is a need to tell which components are 
tested. For a specific BOP structure, to predict tested 
component, a manual compilation of all the possible test 
scenarios can be enumerated before testing and a dictionary 
of test configurations based on open/closed status of 
components can be built. This is feasible when the number of 
test cases is not large but requires automation as complexity 
increases. This automation can not only produce the 
dictionary of configurations, but also determine the tested 
components in real time.  
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Figure 6. Pressure test patterns and evaluated health indices 
(HI): Health index over different slopes HI (s) (above) and 
Health index over different hold durations, HI(d) (below).   

To identify tested components, states of all valves and 
preventers and pressure sources are read at the time of test 
execution and hold periods. For example, Figure 3 depicts an 
example pressure test configuration consisting of several 
components including Annular Preventer and the pressured 
line is kill line. Figure 7 lists open or close status of all 
components depicted in Figure 3. 

By following pressure source to a blocked or closed 
component, pressured areas and tested parts are marked. In 
practice, there are more considerations such as the following:  

 Pinpoint the tested side of valves,  (outside or inside) 
 at most one of the rams may be closed,  
 if one of the paired (inner and outer) valves is closed 

and tested, the other may be open,  
 annular preventers and rams may have one 

directional resistance in pressure, i.e., pressure 
coming from the wellbore,  

 open/closed status of certain components may be 
irrelevant to a given test. 

 
Figure 7. Status of BOP Stack Components involved in 

Example Pressure-test configuration depicted in Figure 3. 
  

A BOP pressure test simulator under these considerations 
was designed. Table 1 presents a partial list of test 
configuration derived from the automated configuration 
identifier based on BOP stack depicted in Figure 3. A 
complete set of test configurations can help optimize the 
planning of BOP pressure tests. Configuration encoding 
determines which components are tested, not tested and 
ignorable regardless of their states (0: open, X: open or close, 
T: tested). The encoding is in the order of UAP, BSR, CSR, 
UPR, MPR, LPR, UOC, UIC, LOC, LIC, CLI, UOK, UIK, 
LOK, LIK, KLI, OB, IB, and MBV. The compiled dictionary 
output from the simulator matched that from manually 
evaluated list made by domain expert. 
 
After a pressure test is finished, the extracted configuration 
will be looked up in the dictionary of planned configurations 
or inputted to the simulator to identify tested components and 
then we further generate feature values and health indices. If 
there is a discrepancy between extracted configurations and 
planned ones, e.g., a non-matching configuration, either the 
test may have been performed incorrectly, or our dictionary 
may not be complete and lacking some test cases. We record 
this case to HI = –1, to differentiate the normal nonnegative 
range of health index. 

We note that blind spots may exist in identifying 
configurations, arising from lack of sensors for a given BOP 
structure. These blind spots relate to several configurations 
and unidentified sources. For instance, if the pressured 
sources are kill and choke lines and all outer valves are 
closed, then the increased pressure does not reach the sensor 
attached to LPR, thus there is no active pressure change 
recorded.  

 

Component Valve State (0=open, 1=closed)
Annular 1
Blind Shear Ram 0
Casing Shear Ram 0
Upper Pipe Ram 0
Middle Pipe Ram 0
Lower Pipe Ram 0
Upper Outer Choke (UOC) 1
Upper Inner Choke (UIC) 0
Lower Outer Choke (LOC) 1
Lower Inner Choke (LIC) 0
Choke Isolation Valve (CIV) 0
Upper Outer Kill (UOK) 0
Upper Inner Kill (UIK) 0
Lower Outer Kill (LOK) 0
Lower Inner Kill (LIK) 0
Kill Isolation Valve (KIV) 0
Outer Gas Bleed Valve (OB) 1
Inner Gas Bleed Valve (IB) 0
Mud Boost Valve 1

Example Pressure Test Setup Configuration
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Table 1. Partial Output of Automated Configuration 
Identifier for Example BOP Stack 

 

The benefit of the automation of configuration analysis 
includes easy extendibility to other complex BOP structures 
and efficient planning as a cost saving measure in rig 
operations. Using the automation, test engineers can perform 
grid-searches of all the cases or adopt Monte Carlo 
approaches to cover all the component tests while reducing 
the number of tests to the minimum, thus reducing cost and 
NPT involved in the tests. 

2.4 Health Decision 

Following evaluation of composite health index (based on 
decay and duration), test configuration is identified and 
observed health index is benchmarked to ‘healthy’ 
performance of that test configuration for a health decision. 

Figure 8 depicts an overview of process flow involved in 
condition monitoring and health decision for BOP stack 
wellbore packers.  

 

Figure 8. Condition Monitoring Process Flow for BOP 
Wellbore Packer.  

3. RESULTS 

3.1. Application to a test well with one-year data 

Features and health indices based on pressure test data from 
an active drilling rig were evaluated. Condition monitoring 
method detailed in previous sections was applied to middle 
pipe ram (MPR) and upper annular preventer (UAP). While 

the rig did not experience any packer failures, it did report an 
opportune preventive replacement of UAP wellbore packer. 

Refer to Figure 9 and Figure 10 for features for MPR. For the 
health index, due to its thresholding effect and global 
representation of a number per a pressure test, the obtained 
health indices were not as informative as features derived. 
Upon close inspection, the large HIs are caused by noisy data, 
which caused unstable and wrong estimation of hold-duration 
as denominator in the definition of HI, and not by degraded 
performance or large decay. 

In generating local features, for the stability of evaluation, 
windows of at least three minutes and having at least three 
data points were considered. For the health index, the decay-
over-time threshold was set to 20 PSI/minute and the hold-
duration threshold to 15 minutes.  

Packer of UAP was changed in October 2017 and their 
features in different time scales are presented in Figure 11 
and 12. There is no significant change in the trend of the 
presented features before and after an event in Oct 2017.  

The proposed method was implemented for real-time 
monitoring of pressure tests and resultant health status. 
However, preventive maintenance of BOP Stack by the 
Drilling Contractor led to period of failure-free operations.  

3.2. Limitations and other promising approaches  

This study investigated features from LPR pressure data. 
Certain pressure tests of Choke & Kill valves, cannot be 
detected by LPR pressure sensor. LPR pressure 
corresponding to these pressure tests showed the baseline 
pressure values without pressure change activities, leading to 
missed detection of pressure test. Pressure data from choke 
line can partially overcome this limitation. Investigation 
using the choke pressure data discovered several pressure 
tests that were not detected by using LPR data. However, 
addition of these tests does not seem to provide significant 
values because there are only few newly discovered tests 
using the choke pressure data. Also, almost the same 
information is obtained from the extracted features by using 
the choke pressure data regarding commonly detected tests. 
Moreover, considering the originally designed BOP function, 
holding pressure from the wellhead, and practical aspects of 
testing major BOP rams close to the wellhead, using LPR 
pressure data is sufficient for the purposes of this study. 

Another limitation of the approach might be from physics of 
the failure of elastomer. The rubber material in rams and 
valves may be functioning acceptably well until it fails to 
resist against pressure in the event of sudden rupture or loss 
of the material. This type of sudden failure can be difficult to 
predict because it may not signal any gradual sign of wear or 
loss of integrity. If the remaining material integrity is the 
same as the new one after long use, measuring the volume 
loss of the material may better determine the remaining life 
of the seal.  

no. configuration
1 T00000T0T00XX000T0X

2 0000T0T0000XX0T0T0X

3 00000TT0000XXXX0T0X

4 000T00XX000XX0T0T0X

5 0T0000XX0000T0T0T0X

Data Source Selection and Data Processing

Identification of test events

Feature Extraction

Health Index Evaluation

Classification of Test Configuration

Benchmarking and Health Decision
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4. CONCLUSION 

A framework for automated condition monitoring of BOP 
Stack wellbore packers based on pressure test data and 
physics of constraints is proposed. Methods for detection and 
identification of pressure tests, health index evaluation and 

identification of tested equipment are developed and 
implemented. Sensitivity of health indices to preventive 
maintenance was evaluated with field-data having no 
failures. In addition, an extension is proposed for 
optimization of BOP Stack pressure test plans through 
automated enumeration of test configurations. 

 

 

 

Figure 9. Features over index of data points for middle pipe ram. The time of pressure tests are shown in the x-axis of the 
bottom figure.  

 

 

Figure 10. Health index (HI) over index of data points for middle pipe ram.  
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Figure 11. Features over index of data points for upper annular preventer. The drastic behavior on several occasions is due to 
data quality, not from actual outliers. 

 

 

Figure 12. Features over time for upper annular preventer. (same information but in a different x-axis scale from the previous 
figure)
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