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ABSTRACT 

Faults, i.e., malfunctioned sensors, components, control, and 
systems, in a building have significantly adverse impacts on 
the building’s energy consumption and indoor environment. 
To date, extensive research has been conducted on the 
development of component level fault detection and 
diagnosis (FDD) for building systems, especially the 
Heating, Ventilating, and Air Conditioning (HVAC) system. 
However, for faults that have multi-system impacts, 
component level FDD tools may encounter high false alarm 
rate due to the fact that HVAC subsystems are often tightly 
coupled together. Hence, the detection and diagnosis of 
whole building faults is the focus of this study.  Here, a whole 
building fault refers to a fault that occurs in one subsystem 
but triggers abnormalities in other subsystems and have 
significant adverse whole building energy impact. The wide 
adoption of building automation systems (BAS) and the 
development of machine learning techniques make it possible 
and cost-efficient to detect and diagnose whole building 
faults using data-driven methods. In this study, a whole 
building FDD strategy which adopts weather and schedule 
information based pattern matching (WPM) method and 
feature based Principal Component Analysis (FPCA) for 
fault detection, as well as Bayesian Networks (BNs) based 
method for fault diagnosis is developed. Fault tests are 
implemented in a real campus building. The collected data 
are used to evaluate the performance of the proposed whole 
building FDD strategies.   

1. INTRODUCTION 

Buildings are responsible for almost 40% of primary energy 
consumed in the U.S., and 51% of the primary energy usage 

in commercial buildings are consumed by heating, ventilation 
and air conditioning (HVAC) system (EIA, 2012). 
Malfunctioning sensors, components, and control systems, as 
well as degrading HVAC and lighting components are main 
reasons for energy waste and unsatisfactory indoor 
environment. Extensive research has been made on the 
development of component level (e.g. chiller, air handling 
unit (AHU) and variable air volume (VAV) terminal units) 
FDD tools. However, in building HVAC systems, some 
whole faults occur in one component but cause abnormality 
in other closed subsystems. For example, when the outdoor 
air damper of an AHU is stuck at a position that is much 
larger than normal in a cooling season, this fault could not 
only cause the AHU’s cooling coil valve to be opened at 
higher than normal position, but also could cause 
abnormalities in the primary cooling system, such as causing 
the chilled water pump to run at a higher speed to provide 
extra cooling needed. A false alarm may be triggered by the 
primary cooling system FDD tool. In such cases, component 
level FDD tools may produce a higher false alarm rate which 
may hinder its wide adoption in the real practice (Katipamula 
& Brambley, 2005).  

In recent years, some system level FDD methods have been 
developed to detect and diagnose whole building operation 
abnormalities. These method can be divided into energy 
model based methods and data-driven based methods. 
Bynum et al., (Bynum, Claridge, & Curtin, 2012) describes 
an Automated Building Commissioning Analysis Tool 
(ABCAT), which is a simulation tool combing expert system 
to detect the energy abnormality. A building energy model is 
firstly developed by using first principles. Actual energy 
consumption data collected from BAS combining with the 
weather data are used to calibrate the simulation model. 
Forecasted energy performances from the calibrated 
simulation model are then compared with the measured data 
to detect faults. O'Neill et al., (O'Neill, Pang, Shashanka, 
Haves, & Bailey, 2014) describes another energy model-
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based FDD method. In their approach, energy consumption 
data from different subsystems including HVAC, lighting 
and plug equipment usage are compared with a reference 
EnergyPlus model which is used to calculate the annual 
energy consumption to determine if the system has operation 
faults. The advantage of model-based FDD methods is that 
they use detailed building energy simulation which can 
provide a relatively accurate energy baseline (if the 
simulation models are well calibrated) to analyze the 
building’s energy performance. If the developed model 
accurately represents subsystems and whole building level 
operation, then fault diagnosis is not too difficult because 
both subsystem level and whole building level comparison 
(model vs. measurements) can be achieved to isolate faults. 
However, the main disadvantage of this approach is that in 
practice, developing such detailed and accurate building 
energy simulation model is very time-consuming and 
calibrating such models to achieve a subsystem level 
accuracy for fault isolation remains to be very challenging. A 
top-down strategy by incorporating temporal and spatial 
partition was developed to detect HVAC faults across 
different levels (Wu & Sun, 2011). In this study, building 
energy consumption flow feature was firstly extracted to 
system faults. Then, energy consumption data was 
partitioned and grouped according system temporal and 
spatial characteristics to locate fault source.  
Another type of methods is data-driven based methods. Data-
driven based methods use system operation data and 
statistical analysis to find the system operation abnormality. 
For example, a statistical process control (SPC) and Kalman 
filter-based method was proposed for the system-level fault 
detection in HVAC systems (Sun, Luh, Jia, O'Neill, & Song, 
2014). But the method was only evaluated through software 
simulation platform. Moreover, efficient whole building fault 
diagnosis method was not proposed to locate the fault root-
cause in this research.  
In this study, the aim of the whole building fault diagnostic 
strategy is to detect and diagnose the root-cause fault that 
happens in one subsystem but has impacts on different 
subsystems. This research proposes a hybrid strategy by 
integrating the developed data driven based method named as 
WPM and FPCA methods for fault detection (Chen & Wen, 
2017) and newly proposed expert and data-driven based 
methods as BNs for fault diagnosis together. Hence, a 
complete framework for whole building FDD can be 
achieved. Building automation system operation data from a 
campus building during the cooling season are collected to 
evaluate the effectiveness of the proposed strategy. 

2. FAULT DETECTION AND DIAGNOSIS STRATEGY 

2.1. Overall Description of the Strategy 

The overall fault detection and diagnosis strategy includes 
three procedures. Firstly, WPM is employed to generate 
baseline data from fault free dataset. Secondly, system 

feature based PCA is used to detect whole building level 
fault. In this step, a feature selection process is performed by 
using Partial Least Square Regression and Genetic Algorithm 
(PLSR-GA) method to handle the issue of high 
dimensionality of a whole building’s dataset. Selected 
features are then used in a PCA modeling and fault detection 
process. Thirdly, when whole building fault is detected, BNs 
is used to diagnose and identify the fault root-cause. Figure 1 
illustrate the structure of the proposed FDD strategy. 

 
Figure 1 Structure of the proposed FDD strategy 

2.2. Development of WPM Method 

The operating condition of a HVAC system in buildings is a 
time-varying process, and is highly related to the change of 
external condition (e.g. weather) and internal condition (e.g. 
zone load) (Sun et al., 2014). A global data-driven model 
which reflects a long process operation may not function well 
when the system operation is changed under different 
conditions. Therefore, it is necessary to develop a local model 
for a small time period which may represents system behavior 
more accurately (Cheng & Chiu, 2004).  

In order to develop a local model, the first step is to search 
the relevant data samples in the database. Here, a WPM 
method is developed to search and identify the “similar data” 
(i.e., data that have similar weather condition and time frame 
as the system snapshot data) from the fault free dataset. 
Symbolic Aggregate ApproXimation (SAX) (Keogh, Lin, & 
Fu, 2005) time series method is used to search similar 
weather time series data in historical fault free dataset. 
Firstly, a 30-minute snapshot window size in fault test dataset 
is decided after balancing the weather conditions change and 
computation efficiency. If a snapshot window size is too 
large, weather condition changes largely within a snapshot 
window and lead to a lower accuracy of Pattern Matching 
(PM). If the window size is too small, the computation burden 
will be increased as an increased number of snapshot window 
is generated. Each historical fault free day is divided with the 
same window size. Secondly, weather information (e.g. 
outdoor enthalpy) from test dataset and historical fault free 
dataset is combined to generate one time series dataset X(t) 
with length n. Then dataset X(t) can be represented in N space 
by a vector 𝑋𝑋� =  �̅�𝑥1,⋯ , �̅�𝑥𝑁𝑁 . Here, �̅�𝑥𝑖𝑖  represents the ith 
element in the vector 𝑋𝑋� and can be calculated by equation 1. 
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      (1) 

By this means, the time series data can be divided into N 
equal size data, and time series data from n dimensions can 
be reduced to N dimensions. 

Thirdly, different symbolic strings are assigned to the X(t) 
according to the normalized data as shown in Figure 2. In this 
study, a data search pool size S is defined to determine how 
many samples will be used to generate a baseline dataset. 
Although a smaller window size can accurately capture the 
weather change, less information is obtained to generate a 
valid baseline database if a small window size is used to 
partition the data. Therefore, an adjacent dataset to the 
snapshot window can be used as the sample pool because the 
building occupancy may remain steady in a relatively long 
period. Lastly, data windows in historical fault free dataset 
which has the same symbolic string with the snapshot 
window are combined together to generate the baseline 
dataset.  

 
Figure 2 Illustration of SAX in PM 

2.3. Feature based PCA for Fault Detection 

2.3.1. Description of Feature Selection 

In this research, a PLSR-GA based method is used to pre-
select the candidate key variables which represent the system 
performance. This method employs PLSR to develop system 
performance model. Building energy consumption from fault 
free days is used as the target output variable.  System 
operation variables are used as predictors. GA is used to 
search whole variable set and generate candidate variable 
subset for the PLSR. When the system performance standard 
is met, the variable subset is determined. By this process, the 
key informative variables can be selected and the variable 
dimensionality can be reduced. Detailed information about 
WPM method can be found in (Chen & Wen, 2017). Feature 
selection is employed by using off-line historical fault free 

data. Whole building electrical energy consumption is used 
to develop the PLSR model. When implementing the GA 
method, the size of population is set to be 64, maximum 
generations are set to be 100, mutation rate is set to be 0.005. 
PLS toolbox 4.0 is used to implement the PLSR-GA method 
(Wise et al., 2007). Every five-day data from historical fault-
free database were grouped together as one test case to 
implement one process of feature selection. 12 test cases from 
2017 summer data were performed to determine which 
feature was selected to building PCA model and for fault 
detection. A total of 536 data measurements are obtained 
from the BAS in the selected building, the final selected 
variables are 73% of the whole building data measurements 
from operation data in the cooling season. The selected 
variables will be used in PCA fault detection. 

2.3.2. Description of Feature Selection 

PCA is one of the most popular data driven based methods 
employed in various industries to monitor system operation. 
PCA uses orthogonal transformation procedure to extract a 
set of linearly uncorrelated principal components (PCs) from 
the possibly correlated original variables (Lin, Keogh, 
Lonardi, & Chiu, 2003). In PCA, a data measurements matrix 
𝑿𝑿 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚  includes 𝑛𝑛  samples and 𝑚𝑚  process variables. X 
can be decomposed into a principal matrix 𝑿𝑿�  plus a residual 
matrix E. The principal matrix 𝑿𝑿�  is a product of a scores 
matrix T and a loadings matrix P, as given as below. 

 
𝑿𝑿 = 𝑇𝑇𝑃𝑃𝑇𝑇 + 𝐸𝐸 =  �𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑇𝑇  + 𝐸𝐸

𝑎𝑎

𝑖𝑖=1

 
 

(2) 

where 𝑡𝑡𝑖𝑖  is a score vector (orthogonal) which contains 
information about relationship between samples and 𝑝𝑝𝑖𝑖   is a 
loading vector (orthonormal) which contains information 
about relationship between variables. 𝑎𝑎 is the number of PCs 
which are selected to retain in the model. Although, there is 
no best strategy to determine how many PCs are retained in 
the model, there are some other rules of thumb and user’s 
knowledge used to determine the number of PCs (Wise et al., 
2007). In this study, we used cumulative variance percentage 
contribution method. In this method, the smallest number of 
PCs is selected to capture a certain percentage of the 
cumulative variance which is pre-determined by the users. 
This number of PCs contributes the maximum cumulative 
variance (Zhu & Ghodsi, 2006).  
 

 𝑑𝑑1 + 𝑑𝑑2 + ⋯+ 𝑑𝑑𝑞𝑞
𝑑𝑑1 + 𝑑𝑑2 + ⋯+ 𝑑𝑑𝑝𝑝

≥ 𝜃𝜃 
 

(3) 
 
where 𝜃𝜃  is the pre-determined percentage, d is variance 
captured by each PC, p is the total number of PC, q is the 
retained number of PC. In this study, 𝜃𝜃 is set to 0.95, e.g. 95% 
cumulative variance will be remained in the PCA model. 
In the study, T2 statistic is used to obtain the detection result 
and can be calculated for each new observation by: 
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 𝑻𝑻𝟐𝟐 = 𝑥𝑥𝑇𝑇𝑃𝑃�𝑎𝑎𝑃𝑃𝑇𝑇𝑥𝑥  
(4) 

where ∑𝑎𝑎  contains the non-negative eigenvalues 
corresponding to the a principal components, 𝑥𝑥 is a newly 
obtained process data vector.  
The upper confidence threshold of T2 can be calculated by 
using F-distribution:  
 

 
𝑻𝑻𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝟐𝟐 =

𝑎𝑎(𝑛𝑛 − 1)
𝑛𝑛 − 𝑎𝑎

𝐹𝐹𝑎𝑎,𝑛𝑛−𝑎𝑎,𝛼𝛼 
 

(5) 
 
where n is the number of samples in the data, α is the level of 
significance. In this study, α is set to 0.01. 
In this study, a PCA model is not generated using the entire 
building measurements. Key variables selected from the 
feature selection process are employed for the PCA modeling 
to reduce computation burden, increase efficiency, and 
increase modeling accuracy. 

2.4. Bayesian Networks (BNs) for Fault Diagnosis 

After whole building fault is detected, it is critical to locate 
and isolate fault root-cause so building operator or 
maintenance personnel can correct those faults. Here in this 
study, a BNs based method is used to diagnose and isolate the 
fault root-cause as illustrated in this section.  

2.4.1. Development of the BN Structure 

BNs are a powerful tool to represent the knowledge and the 
inference under uncertainties. A probabilistic model which 
reveals the causal relations between faults and symptoms can 
be developed through BNs. The probabilities of relations in 
BNs can be updated after new observations (evidence) on the 
system are obtained (Lampis & Andrews, 2009). The process 
of developing BN structure is to generate a cause-and-effect 
inference and in this study expert knowledge is used to 
develop the system rules which will be mapped to the BNs. 
A two-layer of network which includes fault layer and fault 
evidence layer are employed to develop BNs for whole 
building fault diagnosis. 
Network nodes, including fault nodes and fault evidence node 
need to be identified for whole building faults. Here, a fault 
node represents a whole building level fault. For example, an 
AHU outdoor air damper stuck fault (either stuck at a higher 
than normal or lower than normal) can be a fault node. The 
states of the fault node include faulty state and fault-free state. 
In this research, each fault node represents a specific fault 
type. For example, an AHU outdoor air damper stuck at a 
higher than normal position is assigned to one fault node. 
While, an AHU outdoor air damper stuck at a lower than 
normal position is assigned to another fault node. 
Evidence nodes represent observable fault symptoms. Fault 
symptoms typically come from two sources: 

1) Concurrent relationships among measurements. For 
example, when AHU outdoor air damper is stuck at 

a 100% open position, the mixed air temperature 
measurement has the same value as the outdoor air 
temperature measurement.  

2) Historical relationship between the current value of 
a measurement and its historical baseline value. 
Using the same outdoor air damper stuck at a 100% 
open position fault example, an additional evidence 
(during a cooling season) could be that the value of 
the cooling coil valve position is higher than its 
historical baseline value under similar weather 
conditions. In this study, a pattern matching 
method, i.e., the WPM method is used to generate 
the baseline data.  

Here, GeNIe and jSMILE (Drużdżel) BNs tools developed by 
Pittsburg University are used to generate the network. Six 
whole building fault root causes are considered and these root 
causes are set as fault nodes and ten evidence nodes are 
included. Figure 3 demonstrates the developed BN structure 
model for the whole building faults considered during 
cooling operation mode. 

 
Figure 3 BN for nine whole building faults in the cooling 

operation mode 

2.4.2. Determination of the BN Parameters 

The second step in the development of BNs based fault 
diagnosis method is to identify values for the parameters 
(probabilities) in a BNs. The parameters of a BN reflect the 
quantitative relations among parent nodes and child nodes by 
using probability. Usually, three probabilities, i.e., prior 
probabilities, conditional probabilities, and LEAK 
probabilities, need to be determined when developing a BN 
model.   

In this study, the values that have been reported for the 
component level fault diagnosis (Regnier & Wen, 2016) are 
adopted for prior probability. The prior probabilities should 
be updated when more system operation knowledge is 
obtained or statistic results can be found from the historical 
operation data.  

For conditional probability, due to the limitation of testing 
faults in a real building, obtaining condition probability from 
fault data is unrealistic. Obtaining accurate values for 
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condition probabilities from expert knowledge is very 
difficult as well due to the fact that the same fault could 
behave slightly different in different buildings.  However, 
expert knowledge could provide a range of condition 
probability for a fault and its associated fault evidences. For 
example, when AHU outdoor air damper is stuck at a 100% 
open position, the fault symptoms including 1) mixed air 
temperature measurement has the same value as the outdoor 
air temperature measurement; and 2) AHU cooling coil valve 
has a position that is higher than normal (baseline) position).  
Both of these two symptoms are strong symptoms, i.e., they 
would occur whenever the fault occurs. In this study, a fault 
evidence is firstly judged by whether it is a strong evidence 
or not. Three association levels, namely, strong evidence, 
medium evidence, and weak evidence, are used.  If a fault 
evidence is a strong evidence, i.e., when a fault occurs, this 
evidence will most likely to occur, we consider that the 
condition probability of this evidence when a fault occurs is 
90%, out of which, 45% is considered to have very sever fault 
symptom. In the example above, fault evidence node 
(difference between mixed air and outdoor air temperatures) 
is a strong evidence and a 0.45 conditional probability is 
assigned to this node for a very severe fault symptom (very 
abnormal), a 0.45 conditional probability is assigned to this 
node for a sever fault symptom, and a 0.1 conditional 
probability is assigned to this node as a low severe fault 
symptom. Similar treatment is used for the other two 
association levels, i.e., medium association nodes and weak 
association nodes.   

LEAK probability represents the probability of an evidence 
node to be abnormal when all of the parent fault nodes are 
absent (when no fault occurs). LEAK probabilities for each 
evidence node are obtained by considering the outliers in the 
baseline data. After comparing with the baselined data, 
outliers in system operation data can be categorized into three 
trends as positive, negative and normal. Accordingly, an 
outlier is defined as: 

 |𝑥𝑥(𝑖𝑖) − �̅�𝑥| > 𝑡𝑡 ∙ 𝜎𝜎   (6) 

where �̅�𝑥 is the mean of the data sequence, 𝜎𝜎 is the standard 
deviation and t is the threshold. 
In this study, two classes of threshold, i.e., 2𝜎𝜎  is set for “very 
high/very low” and 1𝜎𝜎 is set for “high/low” are used.  
Therefore, LEAK probability can be calculated as: 
 
𝐿𝐿𝐸𝐸𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖𝑡𝑡𝑃𝑃 =  

𝑁𝑁𝑁𝑁𝑚𝑚𝑃𝑃𝑁𝑁𝑃𝑃 𝑃𝑃𝑜𝑜 𝑃𝑃𝑁𝑁𝑡𝑡𝑃𝑃𝑖𝑖𝑁𝑁𝑃𝑃 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 𝑠𝑠𝑎𝑎𝑚𝑚𝑝𝑝𝑃𝑃𝑁𝑁
𝑇𝑇𝑃𝑃𝑡𝑡𝑎𝑎𝑃𝑃 𝑛𝑛𝑁𝑁𝑚𝑚𝑃𝑃𝑁𝑁𝑃𝑃 𝑃𝑃𝑜𝑜 𝑃𝑃𝑎𝑎𝑠𝑠𝑁𝑁𝑃𝑃𝑖𝑖𝑛𝑛𝑁𝑁 𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎 𝑠𝑠𝑎𝑎𝑚𝑚𝑝𝑝𝑃𝑃𝑁𝑁

  (7) 

 
WPM method (Chen & Wen, 2017) is firstly used to identify 
baseline data that has a similar weather condition as the 
incoming snapshot data.  The outliers in the baseline data are 
then counted by using the pre-defined thresholds. LEAK 
probability distribution can be obtained through Equation 5. 
An overall LEAK probability for a fault evidence is 
eventually calculated by averaging LEAK probability from 
the entire baseline database. 

2.4.3. Fault Isolation 

The posterior probability is used to isolate fault root cause. In 
this study, fault root cause is isolated by comparing the fault 
cause posterior probability. A fault is isolated, i.e., identified 
as the root-cause for an abnormality, by the following two 
isolation rules: 1) the posterior probability of this fault node 
is higher than 15%; and 2) the posterior probability of this 
fault node is the highest among all fault nodes and is 10% 
higher than the second-highest one.  

3. FAULT DETECTION AND DIAGNOSIS STRATEGY 

3.1. Building System Description 

In this study, one Drexel campus building – Nesbitt Hall was 
selected to evaluate the proposed method. Nesbitt Hall is a 
seven-story, 78,000 square-foot mixed use building that 
houses offices, classrooms, laboratories, and an auditorium. 
This building includes a typical HVAC system that is 
commonly seen in medium-sized commercial buildings.  A 
water cooled chiller subsystem provides the cooling need for 
the building. One air distribution subsystem which includes 
three air handling units (AHUs) and eighty-eight variable air 
volume (VAV) terminal units is used to serve all seven floors. 
One steam-to-hot-water heat exchanger subsystem located in 
the basement is used to provide domestic hot water and space 
heating needs. BAS is connected to the Nesbitt Hall to 
monitor and control the HVAC system. Figure 4 illustrates 
the HVAC system configuration, chiller plant and AHU 
configuration in the BAS in the Nesbitt Hall. 

 
Figure 4 HVAC system configuration  (Chen & Wen, 2017) 

3.2. Whole Building Fault Description 

Three types of faults including operator fault, primary 
cooling subsystem fault and supply air subsystem faults were 
implemented during summer 2017. The operator faults 
include faults such as 1) “chiller is off while under normal 
operation, it should be on”, 2) “AHU cooling coil valve 
control override at a higher than normal position”, and 3) 
“system is occupied while under normal operation, it should 
be unoccupied”.  Primary cooling subsystem faults include 
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faults such as 1) “chilled water supply temperature sensor 
negative bias (screen reading higher than real value)”, and 2) 
“chilled water differential pressure sensor positive bias 
(screen reading higher than real value)”.  Supply air 
subsystem faults include faults such as “AHU outdoor air 
damper stuck at higher than normal position”. These faults 
were selected because they are considered to have impacts on 
different subsystems or have significant impact on energy 
consumption. The faults were implemented through BAS 
connected to the HVAC system in the Nesbitt Hall or directly 
adjusting the equipment controller (e.g. chiller control panel) 
as shown in Figure 5. 

 
Figure 5 Chiller and BAS connected to the HVAC system 

4. RESULTS AND DISCUSSION 

Eight fault cases which include seven artificially 
implemented faults and one naturally occurred fault from 
summer 2017 are employed to evaluate the developed BN 
strategy. Out of the eight fault cases, all fault are successfully 
detected and seven fault cases are successfully diagnosed. 
The detection and diagnosis results are listed in Table 1. 

Table 1 Fault detection and diagnosis result 
 

 
Date 

Fault Description    Detection and 
Diagnosis Result 

07/09 Chiller is off while under normal 
operation, it should be on 

Detected/Diagnosed 

07/11 AHU-2 OA damper stuck on 
90% open (higher than normal) 

Detected/Diagnosed 

07/18 AHU-2 OA damper stuck on 
100% open (higher than normal) 

Detected/Diagnosed 

07/22 Chiller DP sensor positive bias 
1.4 kPa 

Detected/Diagnosed 

08/03 Chiller CHWS temperature 
negative bias 4°C 

Detected/Mis-
diagnosed 

 
08/05 System is occupied while under 

normal operation, it should be 
unoccupied 

Detected/Diagnosed 

08/11 AHU-2 cooling coil valve 
position software override at 
100% open (higher than normal) 

Detected/Diagnosed 

09/15 Chiller DP sensor positive bias 
0.7 kPa 

Detected/Diagnosed 

4.1. Successfully Detected and Diagnosed Case Example 

On July 11th, 2017, a damper stuck fault (stuck at a higher 
than normal position) was implemented on AHU-2. The 
outdoor air damper at AHU-2 was artificially stuck at 90% 
and 100% open positions by overriding the corresponding 
control signal in the BAS from 10:00PM to 08:01PM. The 
stuck positions (90% open) was higher than the damper’s 
normal position (15% open) under similar weather 
conditions.  In the summer season when HVAC operates 
under cooling mode, the AHU outdoor air damper is usually 
controlled to be at 15% opening to maintain the minimum 
requirement of fresh air flowrate.  Under such circumstances, 
if the outdoor air damper is stuck at a position that is higher 
than normal (15% during cooling mode), cooling coil valve 
position will be increased to ensure the supply air temperature 
meet the setpoint requirement.  However, in the early 
morning and evening hours, when outdoor enthalpy is lower 
than the return air enthalpy, the outdoor air damper is 
controlled under economizer mode to save energy.  In these 
situations, the damper stuck fault would not yield a strong 
fault impact, as the stuck position is very similar to the 
normal damper position (under economizer mode). Figure 6 
shows the fault detection results. It can be see that both of the 
faults are successfully detected by the proposed method. 
However, in some time periods (especially early morning and 
evening hours), T2 statistic value does not overpass the 
threshold due to the lack of fault impacts. The BN method 
reports that there is (on average) 40% posterior probability 
for the “AHU-2 outdoor air damper stuck at too high fault”. 
This posterior probability ranks No.1 compared with the 
posterior probabilities of other causes as shown in Figure 7. 
Therefore, this fault root-cause is successfully diagnosed. 

 
Figure 6 Fault detection result (July 11th, 2017) 

4.2. Mis-diagnosed Case Example 

On August 3th, 2017, a chilled water supply temperature 
sensor negative bias of 4 °F fault was implemented by 
adjusting the chilled water outlet temperature setpoint on the 
chiller control panel. The fault test period was from 10:00AM 
to 09:27PM. This fault had impacts on the downstream 
subsystems. During the test, we observed that only cooling 
coil valves in AHU-1 had higher than normal positions and 
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chilled water return temperature had higher than baseline 
value. 

In this case, the root cause of fault was not successfully 
diagnosed by the BNs method. In the diagnosis result, 
posterior probabilities for “AHU-2 cooling coil valve open 
too high” fault and “AHU-2 outdoor air damper stuck at too 
high” fault reach higher levels compared with “chilled water 
supply temperature negative bias” fault. The peak posterior 
probability for these fault cause are: 0.78 for “AHU-2 cooling 
coil valve operate at too high ” fault, 0.24 for “AHU2 outdoor 
air damper stuck at too high position” fault, posterior 
probability, and 0.04 for “Chilled water temperature negative 
bias” fault as shown in Figure 8. 

 
Figure 7 Fault diagnosis result (July 11th, 2017) 

 

 
Figure 8 Fault diagnosis result (August 3th, 2017) 

There are two reasons may cause this mis-diagnosed case. 
One reason is that not too many evidences are found in 
chiller, AHUs during the fault test period. In this case, only 
chilled water return temperature and AHU-1 cooling coil 
valve position are found to be abnormal compared with the 
baseline data. As more evidences can strengthen BN 
inference and hence generate a higher posterior probability, 
it is therefore BN based fault diagnosis method does not 
diagnose the fault in this case. Another potential reason could 
be that the conditional probability for each root fault cause is 
set to be equal when these faults have the same evidences. 

Since the “chilled water temperature negative bias” fault 
would cause similar fault evidences as other faults such as 
“cooling coil valve open too high” and “outdoor air damper 
stuck at too high” faults, without additional conditional 
probability information, the BN would not be able to 
differentiate the faults. 

5. CONCLUSION 

In this research, a fault detection and diagnosis strategy 
which incorporates data-driven methods and expert 
knowledge based method is proposed for detecting and 
diagnosing whole building level faults. A WPM method is 
employed to find similar system operation data and generate 
baseline data. FPCA method are proposed to detect whole 
building fault detection. BN is developed based on the expert 
knowledge for BN structure model generation. LEAK 
probability distribution and online system evidence 
generation are obtained by data-driven method. System 
operation data collected from one Drexel campus building is 
employed to evaluate the proposed strategy. The evaluation 
from the cooling season demonstrates that the proposed 
strategy is very efficient to detect and diagnose whole 
building level faults with strong symptoms in different sub-
systems. 
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