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ABSTRACT

This paper presents the application of the Extended Phase
Space Topology (EPST) method in model-based diagnos-
tics of nonlinear systems. A detailed nonlinear mathemati-
cal model of a servo electro-hydraulic system has been used
to demonstrate the procedure. Two faults have been consid-
ered associated with the servo valve including the increased
friction between spool and sleeve and the degradation of the
permanent magnet of the valve armature. The faults have
been simulated in the system by the variation of the cor-
responding parameters in the model and the effect of these
faults on the output flow response has been investigated. A
regression-based artificial neural network has been developed
and trained using the EPST extracted features to estimate the
original values of the faulty parameters and to identify the
severity of the faults in the system.

1. INTRODUCTION

Electro-hydraulic servo valves have generated considerable
research interest due to their high degree of accuracy in reg-
ulating and controlling fluid flow in a wide variety of appli-
cations such as hydro-electric power plants, aircraft engines
and manufacturing. Servo valves consist of complex compo-
nents that handle precise and sensitive tasks, such as start-
ing or stopping a flow, modifying the velocity or changing
the pressure, etc. Any deviation of the system components’
parameters or dimensions may lead to instability or system
failure. Hence, it is important to develop effective diagnos-
tic techniques to constantly monitor the performance of such
systems and to identify any faults, including their locations
and severity levels.

Fault detection and diagnostic techniques can be classified
into two main categories: data driven approaches and model-
based approaches. Data driven approaches are based on sig-
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nal processing techniques that are performed on data mea-
sured from the system. These techniques strive to extract
features to indicate the status of the system. Model-based
approaches use physics, represented by mathematical models
of the system, in order to detect faults.

One of the main approaches in model-based fault detection
is to use parameter estimation techniques (Isermann, 1982,
1984; Frank, Ding, & Koppen-Seliger, 2000). Parameter es-
timation is the main scope of this research, which is based
on estimating and comparing the parameters of a defective
system with the parameters of a healthy system. The main
thesis is that the change in the system parameters is usually
associated with the system defects (Isermann, 2005; Baskio-
tis, Raymond, & Rault, 1979; Kappaganthu & Nataraj, 2011;
Liu, Zhang, Liu, & Yang, 2000).

Due to the highly nonlinear characteristics of servo valves,
it is essential to use techniques that can perform effectively
in different domains of the nonlinear response. This paper
presents a continuation of our past work (Samadani, Kwuimy,
& Nataraj, 2014), in which the application of recurrence plots
(RPs) and recurrence quantification analysis (RQA) were in-
troduced. Despite the success of the previous method in pa-
rameter estimation, it can be time consuming and computa-
tionally demanding, which makes it hard for it to be applied
in an automated manner or for it to be integrated into a con-
trol system. Thus, this investigation presents a new approach
for parameter estimation-based diagnostics of nonlinear sys-
tems, based on the extracted information from the nonlinear
response.

In an earlier work, we presented the method of Phase
Space Topology (PST) (Samadani, Kwuimy, & Nataraj, 2015,
2013), which is based on transforming the phase space into
the density space and characterizing the density with quan-
titative measures. It was shown that, depending on the ge-
ometry and shape of the phase space, the density profile con-
tains peaks of various heights and sharpness at multiple lo-
cations. The properties of the peaks in the density distri-

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

bution, including the location, height and sharpness of the
peaks, were used as features in the initial approach. The need
to search for the peaks in the density distributions makes the
PST difficult or sometimes even impractical to implement,
especially for systems with noisy or more complex phase
space patterns. We next improved this approach with Ex-
tended Phase Space Topology (EPST) (Mohamad & Nataraj,
2017; Samadani, Mohamad, & Nataraj, 2016; Mohamad,
Samadani, & Nataraj, n.d.; Mohamad, Kwuimy, & Nataraj,
2017), which will be discussed in detail in Section 3. The
EPST method is based on characterizing the topology of the
density distribution of the response signal, which is then ex-
panded in a series of Legendre polynomials. The coefficients
of the orthogonal polynomials are subsequently used as fea-
tures for a machine learning algorithm to estimate the system
parameters. The present paper extends that approach to be
used as a parameter estimation model-based technique.

Model-based condition monitoring requires a mathematical
representation of the system that can describe the behavior of
the system (here, the servo valve). Thus, a detailed nonlin-
ear mathematical model has been used to simulate the sys-
tem response under various conditions. Faults can be defined
as undesired deviations of a characteristic property or a sys-
tem parameter from the standard acceptable domain, which
causes limitations in achieving a planned task (Isermann,
1984). Two faults have been considered associated with the
servo valve: the increased friction between spool and sleeve
and the degradation of the permanent magnet of the valve ar-
mature. Various electrical current signals, i.e., periodic, bi-
periodic and quasi-periodic, are used as inputs to the servo
valve system. The EPST method is then performed on the
output flow of the servo valve to identify dynamical changes
in the system associated with the faults. Finally, an artificial
neural network (ANN) is trained for mapping of the feature
space to the parameter space.

The remaining parts of this paper are organized as follows.
In Section 2, a detailed mathematical model of the electro-
hydraulic valve has been derived. In Section 3, the definition
of EPST has been presented. Section 4 presents a parametric
analysis for the servo valve system. In Section 5, the paramet-
ric estimation algorithm is discussed along with the results.
Finally, Section 6 concludes the paper.

2. MODELING OF THE ELECTRO-HYDRAULIC SERVO
SYSTEM

A detailed dynamical model of a two-stage servo valve sys-
tem (shown in Fig. 1) with mechanical feedback has been
used in the analysis. Only the final equations are presented
here. The detailed explanation of the model derivations can
be found in (Samadani, Behbahani, & Nataraj, 2013; Rabie,
2009; Gordić, Babić, & Jovičić, 2004). The definition of sys-
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Figure 1. Functional schematic of the electro-hydraulic
servo system

tem states and parameters along with nominal values of the
parameters have been presented in the nomenclature.

Neglecting the effect of the magnetic hysteresis, the net
torque on the armature is given by the following expression.

T = Kiie (1)

where, the coefficient Ki can be calculated by:

Ki =
NλpµoAL

2x2o
(2)

The motion of the armature and the elements attached to it is
described by the following equations:

T = J
d2θ

dt2
+ fθ

dθ

dt
+KT θ + TL + TP + TF (3)

TP = Af (P2 − P1)Lf (4)

where,
Af =

π

4
d2f (5)

The feedback torque depends on the displacement of the
spool and the angle of the flapper and can be given by:

TF = FSLS = KS(LSθ + x)LS (6)

The rotational displacement of the flapper is limited mechan-
ically by the jet nozzles. When the flapper reaches any of the
side jet nozzles, a counter torque TL is applied to it which can
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be calculated by the following equation:

TL =

{
0, |xf | < xi

Rs
dθ
dt − (|xf | − xi)KLfLf sign(xf ), |xf | > xi

(7)
where,

xf = Lfθ (8)

The flow rates through the flapper valve restrictions are given
by the following equations:

Q1 = CDAo

√
2

ρ
(Ps − P1) = C12

√
(Ps − P1) (9)

Q2 = CDAo

√
2

ρ
(Ps − P2) = C12

√
(Ps − P2) (10)

Q3 = Cdπdf (xi + xf )

√
2

ρ
(P1 − P3)

= C34(xi + xf )
√

(P1 − P3) (11)

Q4 = Cdπdf (xi − xf )

√
2

ρ
(P2 − P3)

= C34(xi − xf )
√

(P2 − P3) (12)

Q5 = CdAs

√
2

ρ
(P3 − PT ) = C5

√
(P3 − PT ) (13)

By using the continuity equation for the chambers of the flap-
per valve, the following expressions can be deduced:

Q1 −Q3 +As
dx

dt
=

Vo −Asx
B

dP1

dt
(14)

Q2 −Q4 −As
dx

dt
=

Vo +Asx

B

dP2

dt
(15)

Q3 +Q4 −Q5 =
V3
B

dP3

dt
(16)

The motion of the spool is governed by the following equa-
tions.

As(P2 − P1) = ms
d2x

dt2
+ fs

dx

dt
+ Fj + Fs (17)

Fj =


(
ρQ2

b

CcAb
+

ρQ2
d

CcAd

)
sign(x) for x > 0

(
ρQ2

a

CcAa
+

ρQ2
c

CcAc

)
sign(x) for x < 0

(18)

Ignoring the effect of transmission lines between the valve
and the symmetrical hydraulic cylinder, the flow rates through

the valve restriction areas are given by:

Qa = CdAa(x)

√
2

ρ
(PA − PT ) (19)

Qb = CdAb(x)

√
2

ρ
(Ps − PA) (20)

Qc = CdAc(x)

√
2

ρ
(Ps − PB) (21)

Qd = CdAd(x)

√
2

ρ
(PB − PT ) (22)

(23)

The area of the valve restrictions are given by:{ Aa = Ac = ωc
for x ≥ 0

Ab = Ad = ω
√

(x2 + c2)
(24)

{
Aa = Ac = ω

√
(x2 + c2)

for x ≤ 0
Ab = Ad = ωc

(25)

Considering the internal leakage and neglecting the external
leakage, the following equations can be obtained by applying
the continuity equation to the cylinder chambers.

Qb−Qa−AP
dy

dt
− (PA − PB)

Ri
=

(Vc +Apy)

B

dPA
dt

(26)

Qc−Qad+AP
dy

dt
− (PA − PB)

Ri
=

(Vc −Apy)

B

dPB
dt

(27)

Finally, the equation of motion for the cylinder piston is given
by:

AP (PA − PB) = mp
d2y

dt2
+ fP

dy

dt
+Kby (28)

3. FEATURE EXTRACTION METHOD

LetX=(x1, x2, ..., xn) be an independent and identically dis-
tributed sample data drawn from a distribution with an un-
known density function Ψ. The shape of this function can be
estimated by its kernel density estimator (̂ indicates that it is
an estimate, and h indicates that its value can depend on h).

Ψ̂h(x) =
1

nh

n∑
i=1

Γ

(
x− xi
h

)
(29)

where, h >0 is a smoothing parameter called the bandwidth,
and Γ(.) is the kernel function which satisfies the following
requirements.

∞∫
−∞

Γ(u) du = 1 (30)

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Γ(−u) = Γ(u) ∀u (31)

There is a range of kernel functions that can be used, includ-
ing uniform, triangular, biweight, triweight, Epanechnikov,
normal, etc. Due to its conventional and convenient mathe-
matical properties, we use the standard normal density func-
tion in our approach, defined as the following:

Γ(u) =
1√
2π
e−

1
2u

2

(32)

Let x be a state of the system and yd = f̂h(x), its density
computed using the kernel density estimator. yd is then ap-
proximated with Legendre orthogonal polynomials. Legen-
dre polynomials can be directly obtained from Rodrigues’
formula which is given by:

Φm(x) =
1

2mm!

dm

dxm
[
(x2 − 1)m

]
, m = 0, 1, 2, . . .

(33)
It can also be obtained using Bonnet’s recursion formula:

(m+ 1)Φm+1(x) = (2m+ 1)xΦm(x)−mΦm−1(x) (34)

where the first two terms are given by:

Φ0(x) = 1, Φ1(x) = x (35)

The coefficients of the Legendre polynomials are obtained by
using the least squares method assuming the following linear
regression model:

Ψ(x, β) =

m∑
j=1

βjΦj(x) (36)

Letting

Xij =
∂Ψ(xi,β)

∂βj
= Φj(xi), (37)

the estimated coefficients are given by:

β̂ = (XTX)−1XT yd (38)

The coefficients β̂ constitute the features in our approach that
can be used in classification or regression problems. The ap-
proximated density using Legendre Polynomials is then cal-
culated using the following:

Ψa = Xβ̂ (39)

Root mean square error (RMSE) and Pearson’s correlation
coefficient (PCC) were calculated to compute the quality of
the fit using the following equations:

RMSE =

√
1

N
ZZT , PCC =

σTd σa√
(σTd σd)(σ

T
a σa)

(40)

where, Z = (yd−Ψa) is the residual vector, N is the number
of points in the density function, σd = (yd − E{yd}) and
σa = (Ψa − E{Ψa}). E{.} is the expected value.

4. PARAMETRIC ANALYSIS

For identification of faults, we propose to inject a pre-
specified signal to the system and to compare the system re-
sponse with the healthy condition response. In this study, an
electrical current signal is applied to the servo valve system
after which the output flow of the servo valve is measured for
one second. Note that all analysis were performed using the
mathematical model without any experimental data.

To analyze the effectiveness of the approach, three signals
were used as inputs for the servo valve as follows:

• Periodic input signal

i = 0.01 sin(50t) (41)

• Bi-Periodic input signal

i = 0.01 sin(50t) + 0.005 sin(75t) (42)

• Quasi-Periodic input signal

i = 0.01 sin(50t) + 0.005 sin(50πt) (43)

There are many parameters that can be monitored in typical
electro-hydraulic systems. In this study, as mentioned earlier,
two faults have been considered: (1) the degradation of the
permanent magnet of the valve armature, represented by the
change of the coefficient Ki, and (2) the increased friction
between spool and sleeve, represented by the change of the
spool friction coefficient fS .

In equations 44 and 45, CKi and Cfs are defined to show
variation of Ki and fs from the healthy condition.

CKi =
Ki

Ki

(44)

Cfs =
fs

fs
(45)

where, Ki and fs denote the values of Ki and fs for the
healthy condition and are equal to 0.559 Nm/A and 3.05
Ns/m, respectively. When CKi or Cfs are close to 1, the sys-
tem can be considered to operate in healthy condition. In ad-
dition to the healthy condition (CKi and Cfs are equal to 1),
eight faulty conditions are considered in this section. Four of
the conditions are caused by decreasing CKi by 20%, 40%,
60% and 80%. The remaining four conditions are caused by
increasing Cfs 5, 10, 20 and 30 times.

The effect of the five cases of the coefficient CKi (CKi =
{1, 0.8, 0.6, 0.4, 0.2}), on the output flow of the servo valve
for three input signals are compared in Fig. 2. As is clearly
seen in this figure, for all three input cases, a decrease ofCKi
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results in a decrease of the output flow amplitude of the servo
valve. It is also concluded that the output flow is very sen-
sitive to the variation of CKi, because any change in CKi

affects the time response of the system.

In Fig. 3, the time response of the servo valve system for
three input signals and various values of Cfs are presented.
Five cases of the Cfs parameter were studied (Cfs =
{1, 5, 10, 20, 30}). It can be seen that the effect of Cfs on the
time response of the system is not as easily observed as the
response for changing CKi. To show how the output flow of
the valve is affected by Cfs, some main points of the graphs
are magnified and added to the main figures. From the mag-
nified sections, it is concluded that increasing the parameter
Cfs results in a decrease of the amplitude of output flow at
certain time ranges and an increase of the output flow ampli-
tude at other ranges. This indicates that changing Cfs affects
the output flow in a nonlinear fashion. In general, the change
in Ki or fs affects the output flow of the servo valve system.
This indicates that the output flow has valuable information
about the parameters Ki and fs, which can be used in solv-
ing the inverse problem of estimating the parameters using all
provided information that is contained within the output flow
of the servo valve.

5. FAULT IDENTIFICATION AND SEVERITY ANALYSIS

The previous section illustrates how the time response of the
system is affected by the change of fs and Ki parameters and
how the response for the fs parameter changes in a nonlinear
fashion. In this section, the values of fs and Ki parameters
are predicted based on the time response of the system. In or-
der to capture all available information provided by the output
flow of the servo valve, the EPST method is applied. A sum-
mary of the proposed method is shown in Fig. 4.

The EPST extracted features were used to train two artifi-
cial neural networks (ANNs). ANNs are a form of a multi-
processor system with a high degree of inter-connection sim-
ple processing elements, simple scalar messages and adap-
tive interaction between elements. A multi-layer feed for-
ward (MLFF) ANNs, which is one of the most popular type
of ANNs is used in this study. The structure of the MLFF net-
work includes an input layer, one or more hidden layers and
an output layer, in which each layer consists of some neurons.

In this work, the Back-Error Propagation (BEP) algorithm
was employed in order to minimize the error of the ANN
model. The BEP is one of the most widely used learning al-
gorithm of MLFF-ANNs. In the trained ANNs, the activation
functions for the neurons of hidden and output layers were
Tansig and linear, respectively. Two distinct ANNs were cre-
ated with ten neurons in the input layer and a single neuron
in the output layer. The inputs of the ANNs were selected
to be the first ten coefficients of the Legendre polynomials.
The target outputs of first and second ANNs were Cfs and
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Figure 2. Time response of the system for (a): periodic, (b):
bi-periodic and (c): quasi-periodic inputs to the servo valve
for various values of CKi
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Figure 3. Time response of the system for (a): periodic, (b):
bi-periodic and (c): quasi-periodic inputs to the servo valve
for various values of Cfs
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CKi, respectively. The data was obtained by random selec-
tion of the fs and Ki values in the intervals of [1, 100] and
[0.1, 0.6], respectively. Simulation of the servo valve system
was then performed and the response features, i.e., Legen-
dre polynomial coefficients, were computed at each time. A
total number of 291 samples was used for training, valida-
tion and testing of the model. In the BEP training procedure,
70%, 20% and 10% of data were used for training, testing
and verification, respectively. An additional 9 samples were
used to compare the predicted and the actual values of the Ki

and fs parameters. All data were applied to ANNs in nor-
malized form. The ANNs were trained and tested with three
various set of data obtained from periodic, bi-periodic and
quasi-periodic inputs of the servo-valve system.

To predict the fs andKi parameters, five hidden layer config-
urations (i.e., 5, 10, 15, 20 or 25 neurons) were considered.
Using the obtained data of the quasi-periodic input, a com-
parison between the different hidden layer configurations was
performed. The minimum error was considered to select the
optimum neuron number in the hidden layer. The obtained
results are presented in Fig. ??. As can be seen, the least
error values in prediction of Ki and fS were obtained with
15 and 5 neurons in the hidden layer, respectively. The rest
of the analyses were performed by considering the obtained
optimum neuron numbers for ANNs hidden layer.

The performances of the trained ANN models to predict Ki

and fs parameters for periodic input are shown in Fig. 5. In
the training procedure, the number of epochs was assumed
to be 400. For various input signals the trained ANN was
capable of predicting the Ki and fs values with high accu-
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Figure 5. Training performance of ANNs in prediction of
periodic input for a) Ki and b) fs

racy. This is represented in the performance plots by very
low validation and test errors. For example, predicting Ki for
a periodic input achieved misprediction rate of 1.44 e−06 for
the validation samples. In addition, Figure. 6 illustrates the
regression plots of the network outputs with respect to tar-
gets along the regression values for periodic input. Ideally,
the regression value should be close to 1 and the data in the
regression plot should fall along a 45◦ line for a perfect fit.
As can be seen in this figure, all the points have fallen along
the 45◦ line and the regression values are equal or close to 1,
which indicates an accurate mapping of the feature space to
the parameter space.

Finally, the predicted results are compared with the actual val-
ues in Table 1. As can be calculated from the prediction re-
sults presented in Table 1, the average prediction error for Ki

and fs are 0.07% and 0.63%, respectively. This shows that
the proposed method has a very good ability to predict the
original parameters of the system. Although the parametric

analysis showed that the effects of fs on time response of
the system was nonlinear and not as easily observed as Ki,
the EPST method was able to predict its value for various in-
put signals and on a wide range with 99.37% accuracy. The
EPST parameter estimation algorithm is virtually perfect in
predicting the Ki value with 99.93% accuracy.

6. CONCLUSION

We used the Extended Phase Space Topology (EPST) method
for model-based fault detection and diagnostics of an electro-
hydraulic system. It was shown that the nonlinear response
of the system contains valuable information about the sys-
tem that can be used for this purpose. The analyses were
performed with the assumption that only the output response
of the system (here output flow of the valve) is available. A
parameter analysis was performed on the system in order to
study the relationship between changing Ki and fs parame-
ters and the system response. It was shown that Ki affects
the system response linearly where increasing the parameter
leads to an increase in the output flow amplitude. On the other
hand, changing fs has a nonlinear relationship to the output
flow of the system. It was demonstrated that these dynam-
ical changes can be detected by the EPST method. Finally,
two artificial neural network was trained using the EPST fea-
tures to estimate the faulty parameters of the system. It was
shown that the EPST features can be used as effective indi-
cators for characterizing the nonlinear response of the sys-
tem even in the multi-periodic or quasi-periodic domain with
complex nonlinearities.

In this study, the proposed method was only applied to numer-
ical data obtained from the mathematical model of the sys-
tem. Although the results were promising, there is no guar-
antee that we can obtain the same prediction accuracy for real
experimental data. Hence, it is of importance to confirm the
effectiveness of the approach with experimental analysis. In
addition, only two parametric defects (defects due to change
of parameter values) were considered in this paper, whereas
in real world applications we might have multiple paramet-
ric defects in the system or even defects of the type that can
change the structure of the mathematical model of the system.
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Figure 6. Training regression of ANNs in prediction of periodic input for a) Ki b) fs

Table 1. ANNs fault identification results

No  Actual Periodic Bi-Periodic Quasi-Periodic 
  Value Value Error% Value Error% Value Error% 

1 
Ki 0.5001 0.5000 0.02 0.5003 0.04 0.5004 0.04 
fs 81.0000 80.9802 0.02 81.0352 0.04 80.9280 0.09 

2 
Ki 0.1934 0.1934 0.01 0.1929 0.27 0.1934 0.03 
fs 27.0000 26.5399 1.70 26.3674 2.34 27.0846 0.31 

3 
Ki 0.5646 0.5642 0.08 0.5649 0.05 0.5654 0.13 
fs 49.0000 48.9866 0.03 48.8029 0.40 49.0284 0.06 

4 
Ki 0.1828 0.1828 0.04 0.1826 0.10 0.1828 0.00 
fs 70.0000 69.9075 0.13 69.9971 0.00 69.9037 0.14 

5 
Ki 0.1728 0.1729 0.08 0.1724 0.21 0.1728 0.04 
fs 25.0000 24.4414 2.23 24.3327 2.67 25.1959 0.78 

6 
Ki 0.1482 0.1481 0.07 0.1486 0.27 0.1486 0.28 
fs 35.0000 34.8031 0.56 35.5636 1.61 35.4071 1.16 

7 
Ki 0.3234 0.3234 0.00 0.3234 0.01 0.3234 0.01 
fs 67.0000 66.9028 0.15 67.1100 0.16 67.1874 0.28 

8 
Ki 0.5524 0.5523 0.03 0.5525 0.00 0.5525 0.01 
fs 63.0000 63.1198 0.19 62.6932 0.49 62.6613 0.54 

9 
Ki 0.4575 0.4575 0.01 0.4576 0.01 0.4575 0.00 
fs 44.0000 43.8932 0.24 44.0651 0.15 44.1911 0.43 

Mean 
Error % 

Ki  0.04 0.11 0.06 
fs  0.58 0.87 0.42 
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NOMENCLATURE

Electro-Hydraulic Servo System

a Width of spool edges m 4e-03
A Area of air gap m2

A5 Drain orifice area m2

AL Area of the flow between spool
and sleeve edges m2

Ao Orifice area m2

Aa′ , Ab′ ,
Ac′ , and
Ad′

Spool valve restrictions areas m2

AP Piston area m2 7e-04
As Spool cross-sectional area m2

b Width of sleeve slots m 4e-03
B Bulk modulus of oil Pa 1.5e09
c Spool radial clearance m 2e-06
Cc Contraction coefficient
Cd and CD Discharge coefficients 0.661
df Flapper nozzle diameter m 5e-04
d5 Diameter of return orifice m 6e-04
ds Spool diameter m 4.6e-03
fθ Armature damping coefficient Nms/rad 0.002
Fj Hydraulic momentum force N
fp Piston friction coefficient Ns/m 1000
fs Spool friction coefficient Ns/m 3.05
Fs Force acting at the extremity of

the feedback spring
N

H Magneto-motive force per unit
length

A/m

ib Feedback current A
ic Control current A
ie Torque motor input current A
J Moment of inertia of rotating

part
Nms2 5e-07

Kb Load coefficient N/m 0
KFB Feedback gain A/m 1
KLf Equivalent flapper seat stiffness N/m 1e6
Ki Current-torque gain Nm/A 0.559
Ks Stiffness of the feedback spring N/m 900
KT Stiffness of flexure tube Nm/rad 10.68
K Rotational angle-torque gain Nm/rad 9.45e-4
L Armature length m 0.029
Lf Flapper length m 0.009
Ls Length of the feedback spring

and flapper
m 0.03

Lsp Length of spool land m 1.5e-02
mp Piston mass kg 5
ms Spool mass kg 0.2
P1 Pressure in the left side of the

flapper valve
Pa

P2 Pressure in the right side of the
flapper valve

Pa

P3 Pressure in the flapper valve re-
turn chamber

Pa

PA and PB Hydraulic cylinder pressures Pa
Ps Supply pressure Pa 1.2e7
PT Return line pressure Pa 0
Q Flow rate m3/s
Q1 Flow rate in the left orifice m3/s
Q2 Flow rate in the right orifice m3/s
Q3 Left flapper nozzle flow rate m3/s
Q4 Right flapper nozzle flow rate m3/s
Q5 Flapper valve drain flow rate m3/s
Qa, Qb,
Qc, and Qd

Flow rates through the spool
valve restrictions

m3/s

Ri Resistance to internal leakage Ns/m5 1e20
Rs Flapper seat damping coeffi-

cient
Nms/rad 5000

T Torque of electromagnetic
torque motor

Nm

TF Feedback torque Nm
TL Torque due to flapper displace-

ment limiter
Nm

TP Torque due to the pressure
forces

Nm

V3 Volume of the flapper valve re-
turn chamber

m3 5e-06

Vc Half of the volume of oil filling
the cylinder

m3 1e-04

Vo Initial volume of oil in the spool
side chamber

m3 2e-06

x Spool displacement m
xa Displacement of the armature

end
m

xf Flapper displacement on the
level of the jet nozzles

m

xi Flapper displacement limit m 3e-05
xo Length of the air gap in the neu-

tral position of armature
m 3e-04

λ Magneto-motive force A
λp Magneto-motive force of the

permanent magnet
A 66.75

µ Permeability Vs/Am
µo Permeability of the air Vs/Am 4e-07
µr Relative permeability
ρ Oil density kg/m3 867
ω Width of ports on the valve

sleeve
m 0.014
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θ Armature rotation angle rad

EPST Method

Γ(.) Kernel function
Φm Legendre polynomial of order

m
Ψ Unknown density distribution

for a given data
yd, Ψ̂ Estimated kernel density distri-

bution for a given data
Ψa Approximated density distribu-

tion for a given data using Leg-
endre polynomials

h Bandwidth
β Legendre polynomial coeffi-

cients
Z Residual vector
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