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ABSTRACT 

To enable effective management, planning, and 

operations for future missions that involve a crewed 

space habitat, operational support must be migrated 

from Earth to the habitat. Intelligent System Health 

Management technologies (ISHM) promise to enable 

the future space habitats to increase the safety and 

mission success while minimizing operational risks. In 

this paper, Water Recycling System (WRS) deployed at 

NASA Ames Research Center's Sustainability Base is 

used for verification and validation of the proposed 

solution.  Our work includes the development of the 

WRS simulation model based on its dynamic physical 

characteristics and the design of Automatic 

Contingency Management (ACM) framework that 

integrates fault diagnosis and optimization. In WRS 

modeling, a nominal model with fault injectors is 

developed. Fault detection and isolation techniques are 

then developed for isolating causes and identifying the 

severity of the faults. Dynamic Programming (DP) 

based fault mitigation strategies are designed to 

accommodate the faults in the system. A series of 

simulations are presented with different fault modes 

and the results indicate that the proposed ACM system 

can alleviate the fault in the WRS optimally regarding 

energy consumption and effects of the fault. 

1.  INTRODUCTION 

Most of the planning and management of space operations 

are conducted locally on earth, limiting real-time input from 

crewmembers during space missions. Space habitat crew 

personnel can be given the opportunity to manage, plan and 

operate much of the missions themselves, by migrating 

operational support from Earth to the original habitat in 

space. This task will require significant automation and 

decision support software, which will benefit a small sized 

crew, by enabling new monitoring, tracking, and 

management capabilities onboard the habitat and related 

Extravehicular Activity platforms. Advances in intelligent 

health management technologies increase mission safety 

and success while minimizing the operational risks and 

costs. This innovation is essential to future habitats 

stationed on other planets, asteroids, or lunar surfaces. To 

meet these needs, ACM (Saxena et al., 2007) strategies, 

which include sensing, fault detection, diagnosis, prognosis, 

and decision-making for fault mitigation are needed.  

Under the recent exponential growth of space 

commercialization, many environmnet control and life 

support simulation models are developed. The investigated 

models include BioSim (Kortenkamp & Bell, 2003), 

engineered by TracLabs and commissioned by NASA JSC, 

HabNet (Do, Owens, & de Weck, 2015) developed in MIT 

Strategic Engineering lab, and V-HAB, led by Space 

Exploration Lab in TU Munich. These models have 

medium or high fidelity and HabNet has been validated by 

real data from ISS! Live! website.  However, most of these 

models are system-level models focus on the producer-

costumer relationship but not the dynamic of the system.  
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Figure 1. NASA Ames Sustainability (Poolla et al., 2015) 

There are reported works on using data-driven based 

approaches to analyze data from NASA Ames Sustainability 

Base, shown in Fig. 1, as a testbed for Deep Space Habitats. 

Poolla et al. (Poolla et al., 2015) used an artificial neural 

network to train the on-site sensor data from the 

photovoltaic (PV) system. Basak et al. (Basak, Hosein, 

Mengshoel, and Martin, 2016) integrated dimensionality 

reduction and Bayesian network structure learning with a 

MATLAB adverse condition detection called ACCEPT to 

detect thermal discomforts of occupants. Iverson et al. 

(Iverson et al., 2012) used a distance-based anomaly 

detection method to monitor parameter values in the space 

operations include International Space Station flight control, 

satellite vehicle system health management, launch vehicle 

ground operations, and fleet supportability. Martin et al. 

(Martin, Schwabacher, & Oza, 2007) compared several 

different unsupervised anomaly detection algorithms on the 

Space Shuttle Main Engine (SSME) data. 

There are also several model-based diagnoses and prognosis 

approaches designed for the Environmental Control and Life 

Support System (ECLSS) (Roychoudhury, Hafiychuk, and 

Goebel, 2013) models the WRS deployed at NASA Ames 

Research Center’s Sustainability Base and design diagnosis 

and prognosis approach for it. The limitation of this work is 

it only focuses on the diagnosis and prognosis approaches 

when fault happens. After fault is diagnosed, there is no 

fault-tolerant control method designed to accommodate the 

fault.   

This research aims to develop advanced ACM for Life 

Support Systems (LSS) in a deep space habitat. The WRS, 

which collects condensate in the air, used water, and recycle 

them into the drinkable and usable water, is one of the 

critical subsystems in LSS. In this research, the WRS in 

Sustainability Base is employed as a reference to build the 

WRS model.  To accommodate faults in the WRS, an 

automatically contingency management framework is 

developed. Different fault modes, both discrete faults, and 

continuous faults are injected into the WRS system. Faults 

are detected by a Lebesgue sampling based Extended 

Kalman filter (LS-EKF) approach (Yan & Zhang, 2014). 

With fault state estimation, Dynamic Programming is used 

to optimize the energy consumption and maintain the WRS 

in a degraded but acceptable operating condition. A series of 

simulations are conducted to demonstrate the effectiveness 

of the proposed method. The ACM strategy developed in 

this research is application agnostic and can be applied more 

generally to other subsystems, such as power subsystem, 

waste processing, and biomass processing in LSS, and other 

NASA systems for outer space missions. 

The paper is organized as follows. Section 3 describes the 

dynamic physical characteristic of WRS and the modeling 

of WRS. Section 4 describes the framework of ACM and 

the functions in this framework. Section 5 illustrates a case 

study, which use Dynamic Programming as an optimal 

control method to mitigate the effect of fault. Section 6 

provides concluding remarks and future works. 

2. WATER RECYCLING SYSTEM MODELING 

The ECLSS (Wieland, 1998) includes atmospheric resource 

management; airborne particulate matter removal and 

disposal; water recovery systems; waste management; fire 

protection systems; and environmental monitoring. WRS 

plays a critical role in ECLSS.  

The WRS in the Sustainable Base collects wastewater from 

sinks and showers and recycles them into clean water. Fig. 2 

shows a schematic diagram of the WRS, which consists of 

tanks, pumps, pipes, filters, and forward osmosis (FO) and 

reverses osmosis (RO) modules.  For outer space missions, 

WRS can reduce the water consumption and extend the 

duration of NASA missions. The WRS consists of two 

primary subsystems, namely FO system and RO system.  

During the service of WRS, components like filters, pumps, 

and pipes will degrade, such as clogging of the filter, 

corrosion of pumps, fatigue, fraction, and cracking of pipes, 

etc. These degradations will result in system performance 

 
Figure 2. Diagram of Water Recycling System (Roychoudhury, Hafiychuk, and Goebel, 2013) 

 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

3 

degradation, and if not detected or maintained, they will 

eventually lead to system failure (breakage of pipe or pump, 

or complete clogging). Therefore, diagnosis and 

contingency management of WRS is of vital importance to 

the efficiency, reliability, and safety of ECLSS. In the past, 

the results from diagnosis are often used in maintenance, in 

which only the current fault information is utilized and this 

is a reactive strategy. As a result, when health management 

method is developed, it may not be optimal over a long 

period of time. By integrating real-time prognosis, which 

predicts the fault state in futures times and estimates the 

remaining useful life (RUL), we can upgrade the reactive 

strategy to a proactive strategy, which will lead to long-term 

optimization and more reliable and economical maintenance 

activities.   

When a fault is detected, it is desirable that the system has 

fault tolerant capabilities to alleviate the fault or extend the 

life of the system. For outer space missions, when the 

maintenance is not available, such capabilities of automatic 

reconfiguration, fault tolerant control, and health 

management are significant to the safety of the WRS and 

crew.   

For this WRS shown in Fig. 2, a model has been 

established. Since modeling is not the focus of this paper. 

The model is ignored and more details about the model can 

be found in (Tang et al., 2018) and (Roychoudhury et al., 

2013).  

3.  AUTOMATED CONTINGENCY MANAGEMENT 

At each discrete time step 𝑡 , the healthy nominal system 

model and faulty system (with a fault being injected) share 

the same input 𝑢(𝑡). The measurement denoted by 𝑦(𝑡) for 

the healthy system model and �̂�(𝑡) for faulty system will be 

different. The fault detection algorithm takes the difference 

between 𝑦(𝑡)  and �̂�(𝑡)  , also known as residual 𝑟(𝑡) =
𝑦(𝑡) − �̂�(𝑡) , to detect if there is a fault happens in the 

system. Once the residue reaches the threshold, the fault 

isolation algorithm will distinguish sensor fault or 

component fault by the number of residues reaches the 

threshold. If only one residue reaches the threshold, we can 

claim there is a sensor fault. The sensor with fault will 

become offline, and the new sensor will be used online.  

If several residues reach the threshold at almost the same 

time, we can claim there is a component fault. For 

component fault case, the fault mitigation method would be 

used for mitigating the effect of fault. The fault mitigation 

algorithm is executed to generate new fault control signal, 

which will accommodate the fault and reduce the impact of 

the fault.  

Two fault mitigation methods are proposed in this paper. 

The first fault mitigation method uses Dynamic 

Programming to minimize the control effort while every 

state located within predefined constraints. The second fault 

mitigation uses Lebesgue sampling based Diagnosis to 

estimate how severe the fault is, then a proportional-

integral-derivative (PID) controller to mitigate the fault.  

Fig.3 shows the preliminary framework of automated 

contingency management. The details about modeling, the 

structure can be found in (Tang et al., 2018) and 

(Roychoudhury et al., 2013). 

 

 

Figure 3. The framework of Automated Contingency 

Management. 

3.1. Fault Detection 

Diagnosis aims to monitor the health state of the component 

and detect fault or anomaly from the measurements of 

components. In Bayesian estimation theory, the states are 

described by probability density functions (pdf). Diagnosis 

is conducted by comparing the baseline distribution with the 

real-time fault state estimation distribution, as illustrated in 

Fig. 4 (Yan, Zhang, Wang, Dou, & Wang, 2016). The 

baseline distribution (given by the green distribution) is 

obtained from measurement when it is in healthy condition.  

When false alarm rate is 5%, a threshold is defined by the 

5% of baseline distribution. While the diagnostic algorithm 

is executing, it takes a measurement and computes a real-

time estimation distribution of the fault state (given by the 

red distribution). If 90% (predefined confident level of 

detection) of the real-time pdf is beyond the detection 

threshold given by the vertical blue line, then we can claim 

a fault is detected with 5% false alarm rate and 90% 

confidence.  
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Figure 4. Fault detection criteria and fault detection process. 

3.2. Lebesgue Sampling based Fault Identification 

The objective for fault diagnosis is to estimate how severe 

the fault is, which can be used to alarm crew and automatic 

control system. Since the computational resource can be 

limited on a Deep Space Habitat, the Lebesgue Sampling 

based fault diagnosis method is applied. 

Different from traditional Riemann sampling framework 

(RS), LS method divides the state axis by some predefined 

states (also called Lebesgue states). These Lebesgue states 

are deteremined by the number of Lebesgue states and the 

range of feature value. The diagnosis is triggered only when 

the fault state, which is reflected by the fault indicator 

extracted from the raw measurement, changes from one 

Lebesgue state to another, or an event happens (Yan et al., 

2016). To illustrate the concept of LS, a degradation curve 

is shown in Fig. 5.   

 
Figure 5.  Illustration of LS. (a) RS with a fixed time 

interval; (b) LS with fixed Lebesgue state length 

 

It is clear that the degradation in the range 𝑅1  = [1,780] 

cycle is smaller than that in the range 𝑅2  = [780, 1000] 

cycle. Using RS method with fix time interval, as shown in 

Fig. 5(a), the diagnosis algorithm is executed at each cycle 

no matter if it is necessary. The setting of fix time interval, 

although guarantees the tracking accuracy for fault growth 

in the range 𝑅2, results in many unnecessary calculations in 

range 𝑅1. 

Ideally, we expect to reduce the number of diagnosis 

execution in the range 𝑅1 where the degradation is slow so 

that more resources can be assigned to other tasks. In the 

range of 𝑅2  where the degradation becomes fast, we 

increase the number of diagnosis execution by assigning 

more resources to diagnosis tasks. 

This strategy, however, involves time-varying sampling 

period that is not an easy task within the Riemann sampling 

framework. With Lebesgue sampling, the realization of this 

approach becomes natural. By defining Lebesgue states on 

the vertical axis of fault dimension, fewer transitions 

between states are made when the fault growth is slow while 

more transitions are made when the fault growth is fast. For 

example shown in Fig. 5(b), only 4 Lebesgue states are 

visited in the first 780 cycles in 𝑅1  and 7 states in the 

remaining 220 cycles in R2, which means that the diagnosis 

only needs to be executed 4 times in 𝑅1 and 7 times in 𝑅2. 

With this consideration, in R1, more computation resources 

can be assigned to other tasks while only a little resources 

are needed for diagnosis. In 𝑅2, more resources are assigned 

to diagnosis tasks so that the fault dimension can be tracked 

accurately. 

3.3. Dynamic Programming 

Dynamic Programming (DP) is an algorithmic paradigm 

that solves a given complex problem by breaking it into sub-

problems and stores the results of sub-problems to avoid 

computing the same results again. DP can be used to the 

issues that have the following two main properties: over-

lapping sub-problems and optimal sub-structure.  

For the first property, DP is mainly used when solutions of 

same sub-problems are repeatedly needed. In DP, computed 

solutions to sub-problems are stored in a table so that they 

can be used in future for same sub-problems directly. 

Therefore, DP is not useful when there are no common 

(overlapping) sub-problems. For the second property, a 

problem has optimal sub-structure if optimal solution of the 

given problem can be obtained by using optimal solutions of 

its subproblems.  

In our ACM system, the ACM optimization needs to be 

solved with estimated fault state for a given fault mode 

recursively. When an optimal ACM strategy is generated, 

before it is changed, the optimization will have the same 

structure. Therefore, DP suits the ACM optimization very 

well. It is also worth mentioning that, there are many similar 

components in the LSS, such as pumps, filters, and motors. 

When a fault happens to these components, the optimization 

problem will be defined similarly, which indicates DP can 

also be used in high-level optimization.  
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However, the computation cost of DP will increase 

exponentially with the increase of number of state in the 

optimization, DP is limited to subsystems in WRS. The 

same strategy can be applied to other subsystems so that the 

overall optimization can be achieved. For the WRS 

simulation model developed, there is 11 state and we will 

use the state related to a pump-filter subsystem for case 

study. The selected states are chosen based on the criteria 

that when a component happens, only a few states will 

deviate from the nominal condition while the rest of the 

states remain as the same in short period.  

4. CASE STUDY I: DYNAMIC PROGRAMMING BASED 

FAULT MITIGATION 

As mentioned early, a pump-filter subsystem will be used in 

this section for illustration and demonstration of the 

proposed ACM system and DP optimization.  

4.1. Fault Mode 

In this case study, the Filter2 clogging fault scenario is 

studied. From Fig. 6, 𝑅𝑓𝑖𝑙𝑡2, which indicates the hydraulic 

resistance to flow through the Filter2, is directly related to 

the health condition of Filter2 and is used as health 

indicator. According to its dynamics, it is assumed that, 

when clogging happens, the value of this health indictor will 

decrease in a quadratic form and is represented as: 

𝑅𝑓𝑖𝑙𝑡2 = {
5 × 10−8 , 𝑡 ≤ 𝑡𝑓

5 × 10−8 − 5 × 10−8(𝑡 −  𝑡𝑓)
2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Fig. 6 illustrates the fault scenario when filtering clogging 

occurs at 𝑡𝑓 = 500 minute.  

 
Figure 6. Degradation curve for  𝑅𝑓𝑖𝑙𝑡2                               

4.2. Fault Diagnosis  

The objective of fault diagnosis is to detect the component 

fault and estimate how severe the fault is. In this study, the 

faulted component is Filter2. When Filter2 is clogging, the 

pressure of Filter2 will gradually increase. Therefore, the 

pressure of Filter2 is used in Lebesgue Sampling-based 

Extended Kalman Filter (LS-EKF) to detect clogging and 

estimate the parameter 𝑅𝑓𝑖𝑙𝑡2 , which indicate the Health 

Indicator of Filter2. 

As for the LS-EKF method, a state model and a 

measurement model are used for fault detection and 

identification (Tang et al., 2018). Here the EKF is described 

to make this section self-complete. Suppose the fault 

dynamics is described by the following nonlinear model: 

 𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝜔𝑘−1   (1) 

 

where 𝑥𝑘 is the states to be estimated, 𝑓(∙) is the nonlinear 

function of states, 𝑢𝑘 is the input at time 𝑘, 𝜔𝑘−1 is a zero 

mean Gaussian noises with covariance matrix 𝑄𝑘.  

The observation model that describes the relationship 

between state 𝑥𝑘 and measurements 𝑧𝑘 is given by: 

 𝑧𝑘 = ℎ(𝑥𝑘) + 𝜈𝑘  (2) 

where ℎ(∙) is the measurement function of the state, 𝜈𝑘 is a 

zero mean Gaussian noises with covariance matrix 𝑅𝑘. 

For EKF, the Jacobian of 𝑓(∙)  and ℎ(∙)  need to be 

calculated, which is given by: 

 𝐹𝑘 =  
𝜕𝑓

𝜕𝑥
|�̂�𝑘−1|𝑘−1,   𝐻𝑘 =  

𝜕ℎ

𝜕𝑥
|�̂�𝑘−1|𝑘−1   (3) 

Then, the prediction step calculates the mean and covariance 

of the prior distribution by using the following equations: 

 
�̂�𝑘|𝑘−1 = 𝑓(�̂�𝑘−1|𝑘−1, 𝑢𝑘)  

𝑃𝑘|𝑘−1 =  𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘 

(4) 

 

where �̂�𝑘|𝑘−1   is the mean of the priori distribution and 

 𝑃𝑘|𝑘−1 is the covariance matrices of the predicted state. 

When the measurement becomes available, the correction 

step uses it to calculate the posterior distribution, by 

following the following equation: 

 

�̃�𝑘 = 𝑧𝑘 − ℎ(�̂�𝑘|𝑘−1)

𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘�̃�𝑘

 
(5) 

where �̃�𝑘  is the measurement residual, 𝑆𝑘  is the residual 

covariance, 𝐾𝑘  is the near-optimal Kalman gain, 𝑅𝑘  is the 

covariance matrix of the observation noises, 𝑃𝑘|𝑘  is the 

updated covariance estimate, �̂�𝑘|𝑘  is the updated state 

estimate, and 𝐼 is the identity matrix.  

The first task is to detect whether the filter has clogged. This 

is conducted by comparing the baseline 𝑅𝑓𝑖𝑙𝑡2  distribution 

(obtained from simulation) against the real-time 𝑅𝑓𝑖𝑙𝑡2 

distribution as shown in Fig. 7, which indicates two real-

time estimation pdfs at two different time instants. To make 

the description clear, the 𝑅𝑓𝑖𝑙𝑡2  without clogging is 
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normalized to 1. With the baseline distribution and 5% false 

alarm, the fault detection threshold is 0.9984, which is 

indicated by the blue vertical line. The mean value of the 

real-time distribution at the 601𝑠𝑡  min is 0.9852 and its 

95% confidence interval is [0.9695, 1.0009]. The probability 

of detection is set to be 0.95, and more than 95% percent of 

the real-time distribution is below the blue line, so it claims 

a fault is detected at the 601𝑠𝑡 min.  Note that the results 

shown in Fig.7 are available at every time instants to reveal 

the fault state pdf, which can be used in ACM.  

 
Figure 7. The fault detection results.  

4.3. Dynamic Programming for Optimal Control  

The objective of DP is to minimize the control effort while 

maintaining each state within their constraints. In this paper, 

DP is implemented, and qualitative evaluation is studied. 

The pump-filter subsystem used in DP is shown in Fig. 8. 

 

𝑝𝐹𝑇2 = Hydraulic Pressure in Feed Tank 2 

𝑝𝑃𝑖𝑝𝑒2 = Hydraulic Pressure in Pipe Segment 2 

𝑝𝐹𝑖𝑙𝑡2 = Hydraulic Pressure in the Filter 2 

𝑝𝐹𝑂1 = Hydraulic Pressure in the FO Module 1 

𝑞𝑃𝑢𝑚𝑝4 = Outflow Rate of Pump 

𝑞𝐹𝑂1𝐹𝑇2 =            Flow of Water from the FO Module to                          

                             Feed Tank 2 

𝑞𝐹𝑖𝑙𝑡2 = Flow rate of Filter 2 

Figure 8. Simplified diagram of subsystem of Water 

Recycling System (Roychoudhury et al., 2013) 

The benefit of DP based fault mitigation is the constraints 

on each state, and the final state can be adjusted based on 

the physical limitation (threshold) of the component or 

system and the need of the crew.  

4.3.1. Problem Definition 

When the filter clogging fault is isolated, our objective is to 

minimize the control effort or energy cost for the Pump4. 

DP is used for optimal control of this subsystem.  

When clogging fault occurs in Filter2, the pressure of 

Filter2 (𝑝𝐹𝑖𝑙𝑡𝑒𝑟2) will increase by clogging. As a result, the 

outflow rate at Pump4 (𝑞𝑝𝑢𝑚𝑝4 ) and the outflow rate of 

Filter2 (𝑞𝐹𝑖𝑙𝑡𝑒𝑟2) will decrease. The water transferred from 

FO Module to Feed Tank 2 is denoted by 𝑞𝐹𝑂1𝐹𝑇2. 

Therefore, based on these measurements and states, the 

filtering subsystem has three states (𝑝𝑃𝑖𝑝𝑒2,𝑝𝐹𝑂1, 𝑝𝐹𝑇2) and 

three measurements ( 𝑞𝑝𝑢𝑚𝑝4 , 𝑞𝐹𝑖𝑙𝑡𝑒𝑟2 , 𝑞𝐹𝑂1𝐹𝑇2 ). The 

optimal control problem is to find an admissible control 

sequence 𝑢𝑘, 𝑘 =  0, 1, . . . , 𝑁 , (𝑁  indicates the final time 

instance) such that the cost function is minimized and the 

constrains are satisfied (Elbert, Ebbesen, & Guzzella, 2013), 

as shown in Eq. (6) 

 

min
𝑢𝑘∈𝑈𝑘

{𝑔𝑁(𝑥𝑁) + ∑ 𝑔𝑘

𝑁−1

0

(𝑥𝑘 , 𝑢𝑘)} 

(6) 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘 , 𝑢𝑘) 

𝑥𝑘 ∈ 𝑋𝑘 ⊆ ℝ𝑛 

𝑥𝑁 ∈ 𝑇 ⊆ ℝ𝑛 

𝑢𝑘 ∈ 𝑈𝑘 ⊆ ℝ𝑚 

For all 𝑘 = 0, 1, … , 𝑁. 

where 𝑔𝑁(𝑥) is the final cost term and 𝑔𝑘(𝑥𝑘 , 𝑢𝑘)  is the 

stage cost, 𝑥0  and 𝑥𝑁  are the initial state and final state, 

respectively, and 𝑥𝑁  is constrained by a target set 𝑇 . 

Additionally, the input signals are constrained by the time-

variant set 𝑈𝑘 .The functions 𝑓𝑘  and 𝑔𝑘  are discrete-time 

representations of the dynamic system and the stage-cost 

function.  

At time 𝑘 , the state space is discretized to the set 𝑋𝑘 =

{𝑥𝑘
1, 𝑥𝑘

2, … , 𝑥𝑘
𝑞

}, where superscript 𝑖  in 𝑥𝑘
𝑖  denotes the state 

variable in the discretized state–time space with time index 

𝑘 and state index 𝑖. The control space is represented by the 

discrete set 𝑈𝑘 = {𝑢𝑘
1 , 𝑢𝑘

2, … , 𝑢𝑘
𝑞

}. When a fault happens, DP 

starts and the control space is computed by DP backward 

process. The control space with minimum cost would be use 

by DP forward process for fault mitigation. 

4.3.2. Dynamic model of the filtering system 

To implement DP algorithm efficiently, the filtering system 

in FO module shown in Fig. 8 is used as a case study. The 

mathematical model of this filtering system is given as: 

The following Ordinary Differential Equations (ODE) 

describe the filtering subsystem: 

  �̇�𝐹𝑇2 =
1

𝐶𝐹𝑇2
(𝑞𝐹𝑖𝑙𝑡1 + 𝑞𝐹𝑂1𝐹𝑇2 − 𝑞𝑃𝑢𝑚𝑝4)           (7) 
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�̇�𝑃𝑖𝑝𝑒2 =

1

𝐶𝐹𝑖𝑙𝑡2

(𝑞𝑃𝑢𝑚𝑝4 − 𝑞𝐹𝑖𝑙𝑡2) 
(8) 

 
�̇�𝐹𝑂1 =

1

𝐶𝐹𝑂1

(𝑞𝐹𝑖𝑙𝑡2 − 𝑞𝐹𝑂1𝐹𝑇2 − 𝑞𝐹𝑂) 
(9) 

with the constraints of 𝑝𝐹𝑇2 ∈ [0,10] , 𝑝𝑃𝑖𝑝𝑒2 ∈ [0,160],

𝑝𝐹𝑂1 ∈ [40,50] , and 𝑢𝑃𝑢𝑚𝑝4 ∈ [1.0,1.2] . The specified 

constraint values for the optimization problem are selected 

based on our understanding of the system. These values can 

be adjusted according to the real system. The selection of 

these values, however, does not affect the implementation of 

the proposed solution. 

Note that the constraint on 𝑝𝐹𝑂1 is based on assumption that, 

at this range, the water flow into the FO Module 1 is 

considered to be accessible for the crew and other 

components. The constraint on 𝑝𝑃𝑖𝑝𝑒2 and 𝑝𝐹𝑇2 are based on 

assumption that the Pipe2 can operation for pressure less 

than 160 psi. Note also that the pressure of Feed Tank2 will 

not change significantly. Because before Pump4 starts to 

work and Filter2 becomes clogging, the water transferred 

into the Feed Tank2 is much more than water transferred out 

from Feed Tank2. To simplify the problem, it is assumed 

that the increase of pressure in Feed Tank2 (𝑝𝐹𝑇2) is mainly 

caused by the water transferred into Feed Tank2. Therefore, 

the state model for 𝑝𝐹𝑇2 can be simplified as follows: 

 �̇�𝐹𝑇2 = 𝑎                 (10) 

The cost functional to be minimized is given by 

  J = ∫ 𝑢𝑃𝑢𝑚𝑝4𝑑𝑡
𝑡𝑓

0
 (11) 

4.3.3. Simulation Result 

When continuous Filter2 clogging fault mode is injected 

into the model, diagnosis algorithm will detect whether 

there is a fault, as shown in Fig. 7. Once the fault is 

detected, the DP base fault mitigation would compute all 

possible control space from 𝑥𝑁  to 𝑥0  numerically, and the 

control sequence with minimum cost as the control signal 

for the fault mitigation.  

Fig. 9 illustrates the simulation results of this case study, 

which include the results of the pressure of Pipe2, the 

pressure of FO Module 1 and the input signal of Pump4. 

When Filter2 clogging occurs, the pressure of FO Module 

will decrease, which means less water is being transferred 

into the FO Module1. The Filter2 clogging will affect other 

modules after FO Module 1 in the long run. Therefore, 

constraints on the 𝑝𝐹𝑂1  are set between 40 psi to 50 psi 

(represented by the red line in Fig. 9(b)), and assuming this 

is appropriate for crew and other system.  

Fig. 9(a) shows that, when fault at Filter2 happens, the 

pressure at Pipe2 will decrease (represented by the black 

line). With  DP based fault mitigation, the pressure of Pipe2 

will increase within a constraint. In this case study, we 

assume when Pipe2 can operate under pressure less than 

160psi. 

 

 

Figure 9. Simulation results of Dynamic Programming 

based fault mitigation. (a) The pressure of Pipe2; (b) The 

pressure of Forward Osmosis Module1; (c) The input 

control signal 

As shown in Fig. 9(b), when the fault happens, the pressure 

of FO Module1 decreases quadratically (represented by the 

black line), which indicates the water transferred in the FO 

Module is much less than the normal condition (represented 

by the green line). The magenta line represents the results 

after DP based fault mitigation is implemented while the 

system is operated in a degraded but accessible situation. 
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Fig. 9(c) represents the control signal for Pump4. In this 

case study, the magnitude of the input signal for Pump4 is 

normalized to 1, and the 1.2 represents the maximum input 

for Pump (restricted by the physical limitation of Pump4).  

4.3.4. Resolution 

The state space must be discretized for the DP algorithm. 

The resolution of the state-space discretization is a critical 

factor for DP. With the increase of resolution, the accuracy 

of the solution would improve, but the more computation 

effort is required.  

Therefore, a study is carried out to quantify the accuracy of 

the solution obtained by the DP for the pump-filter 

subsystem in WRS. Fig. 10 shows the deviation of the 

optimal solution evaluated with DP with different state-

space discretization density. From the simulation result, we 

can conclude that when the state space discretization 

increase, the cost of the control input will increase.  

 

Figure 10. Cost consumption deviation with different state-

space discretization. 

5. CASE STUDY II: PID CONTROLLER BASED MULTI-

STAGE FAULT MITIGATION 

For PID based fault mitigation, it is a static optimization 

strategy. Based on the severity of fault, the fault mitigation 

method with PID controller can be divided into three stages.  

1) At the first stage, when the fault is not severe, the 

control objective is to bring the outflow rate of Filter2 

back to its normal condition.  

2) At the second stage, when fault becomes more severe, 

the control objective is to bring the outflow rate of 

Filter2 to degraded performance. In this study, 95% of 

the normal outflow rate is considered as a reference.  

3) At the third stage, when fault becomes even more 

severe, the control objective is to bring the outflow rate 

to further degraded performance. In this study, 85% of 

the regular outflow rate is considered as a reference. At 

this stage, the relief valve would be opened to maintain 

the pressure of Filter2 into an accessible range.  

 

 

 

 

Fig. 11 Simulation result of PID controller based multi-

stage fault mitigation. 
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Fig. 11 shows the results of fault mitigation. In these 

figures, the first red vertical line represents fault happens at 

𝑡 = 500𝑡ℎ min. The second red vertical line represents fault 

detected at 𝑡 = 601𝑠𝑡 min. At this time, the PID controller 

starts working, which indicates the fault mitigation Phase I 

starts. The third red vertical line represents fault mitigation 

stage II begins at 𝑡 = 804𝑡ℎ  min. The fourth red vertical 

line represents fault mitigation stage III begins at 𝑡 = 900𝑡ℎ 

min. Fig. 11(a)-(d) show the outflow rate of Filter2, and 

outflow rate of Pump4, the pressure of Filter2, input to the 

Pump4, respectively.  

When the fault happens at the 500th min, the pressure of 

Filter2 begins deviating from the nominal system pressure. 

The outflow rate of Filter2 starts decreasing, which means 

the water production begins to drop. As a result, the outflow 

rate from pump4 starts dropping too. Lebesgue sampling-

based diagnosis detects filter clogging at the 601𝑠𝑡 minute. 

At this time, fault mitigation stage I would start, and the 

PID controller will follow the reference signal and bring the 

outflow rate of Filter2 to the nominal condition. At time 

803rd minute, when the reference signal cannot be 

maintained because the physical limitation of Pump (In this 

study, we assume the limitation is 115% of operating 

voltage, and 95% of the normal outflow rate of Filter2 is 

used as the new reference signal at Stage II. The pressure of 

Filter2, however, is still increasing because of the 

degradation of the Filter2. When the pressure becomes 

higher than 88 psi, which is the limit set to keep the safe of 

WRS, the relief valve is opened to keep the pressure of 

Pump4 below this safety threshold. At this time, the 85% of 

the outflow rate in normal condition is used as the new 

reference signal at this stage. 

6. COMPARISON OF DP AND PID-BASED ACM 

By comparing the simulation result from these two different 

approaches, the advantages and disadvantages of these two 

approaches are discussed in Table 1. 

7. CONCLUSION 

In this work, an automated contingency management 

solution is developed and the WRS in NASA Ames 

Sustainability Base is used as a testbed for verification and 

validation. Lebesgue sampling-based diagnosis is used for 

fault diagnosis. Dynamic programming and a PID-based 

fault mitigation strategy are introduced in the proposed 

ACM system for comparison studies. 

For the future work, we will seek the access to the real data 

set of photovoltaic and WRS systems for ACM verification. 

Meanwhile, the physical degradation characteristic of 

components in the WRS can be derived from regression 

methods. The NASA existing abnormal detection toolbox 

will also be integrated into the proposed system to introduce 

a data-driven approach for fault detection. 

Table 1. Comparison between DP based fault mitigation and 

Multi-Stage PID based fault mitigation. 

 DP Multi-Stage PID 

A
d

v
an

ta
g

e 

The constraints can be set 

based on the physical 

limitation of the 

component and the 

reference signals are not 

required for DP. 

Simulation results show 

that the performance of 

average outflow rate of 

the Filter2 is better than 

the Multi-Stage PID 

based approach. 

PID controller can bring 

the some of the 

measurements to its 

normal condition or a 

degraded performance 

which follow the 

reference signal. 

Simulation results show 

that the performance on 

energy cost of the Filter2 

is 11.91% less than that of 

the DP based approach. 

D
is

ad
v

an
ta

g
e 

When the state dimension 

of the system is large, the 

computation cost would 

grow exponentially, 

which becomes the major 

limitation for this 

approach being applied on 

space habitat. 

The reference signal 

derived from a high-level 

optimization strategy is 

required. 
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NOMENCLATURE 

ACM = Automated Contingency Management 

DP = Dynamic Programming   

ECLSS = Environmental Control and Life Support                         

                             System             

EKF = Extended Kalman Filter 

PF = Particle Filter 

PV = Photovoltaic 

WRS = Water Recycling System 

LSS = Life Support System 

LS = Lebesgue Sampling 

RS = Riemann Sampling 

ODE = Ordinary Differential Equation 
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