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ABSTRACT 

Constant stress amplitude fatigue tests were conducted on the 
notch pre-cracked Aluminum 7075-T6 rivet hole dog-bone 
coupons. Monitoring of visible surface crack length by 
special surface engraving using digital microscope images 
and by ultrasonic sensors signals was carried out to yield 
fatigue crack length measurements in relation to number of 
fatigue cycles applied. The experimental results provide 
ultrasonic sensor validation for fatigue crack length 
measurements.  Fracto-graphic examination of failed fatigue 
surfaces has provided further confirmation of notch pre-crack 
length, crack initiation process, and crack growth marker 
bands. These experimental inputs were used in NASGRO and 
AFGROW software fatigue crack growth simulations. The 
simulation results did not match the crack initiation fatigue 
life measured by experiments. However, there was good 
agreement with crack growth simulations of larger cracks. 
Hence, we plan to develop a machine learning application 
that will learn the fatigue crack initiation and crack growth 
processes from data obtained from our own experiments and 
other fatigue data available from AFGROW databases. 
Nonlinear AutoRegressive models with eXogenous input 
(NARX) artificial neural network were used to predict crack 
growth longer than 5.0-mm. Particle filtering modeling with 
Bayesian updating was applied to these experimental data for 
prognostics of fatigue crack growth. A concept design and 
preliminary implementation results will be presented. 

1. BACKGROUND AND MOTIVATION 

Accurate estimation of fatigue crack initiation cycles and 
growth rates are crucial to safe and efficient operation of air 
vehicles.  Fatigue crack growth simulation software packages 
such as NASGRO (NASGRO) are commonly used for 
estimation of fatigue crack parameters. However, fatigue life 
and crack length estimates have been found to be wrong by a 
factor of as much as tenfold (Haile, 2012 and Vasudevan, 
2016). The main contributing factor of such large errors is the 
use of equivalent initial flaw size (EIFS) (Newman, 2016).  
EIFS is commonly calculated through back extrapolation 
from a long fatigue crack using the Paris crack growth law 
(Paris, 1963). The EIFS has been reported as a material 
property (Johnson, 2010); however, the authors argue that it 
is in fact application dependent. The proposed effort uses a 
measurable notch pre-crack introduced on the rivet hole of 
the dog-bone shaped Aluminum 7075-T6 coupon. 

The motivation for this effort is the U.S. Army aviation 
community’s desire to achieve a “zero-maintenance aircraft.”  
To that end, the U.S. Army Research Laboratory is 
conducting research into damage precursors (Weiss, 2014).  
When linked with crack-growth models, the ability to predict 
damage initiation through precursor detection will enable 
prognostics that can provide a risk-based estimate of the 
remaining useful life of a structure.  Zio (2010) demonstrated 
the ability to predict crack growth in metal using particle 
filtering.  This work aims at addressing the challenges of this 
approach by (1) using structural health monitoring techniques 
to detect when crack initiation occurs and (2) linking crack 
initiation to crack-growth models to predict when failure will 
occur using experimental data. Robert Haynes et al. This is an open-access article distributed under the 
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2. APPROACH 

Twenty seven coupons have been tested, and the data 
collected includes the number of cycles, crack length, and 
structural health monitoring system sensor data.  The 
coupons used for crack growth are Al 7075-T6 dog-bone 
shaped, which have a nominal thickness of 1.6 mm (0.063 
inch), ultimate tensile strength of 715 MPa (75 ksi), yield 
stress of 482 MPa (69.9 ksi), and modulus of elasticity of 71.7 
GPa (10,400 ksi).  Figure 1 (Iglesias, 2015) shows the 
dimensions of the fatigue test coupon, which was machined 
with a rivet size hole and a notch pre-crack. In order to 
accelerate crack growth, so that fatigue failure would occur 
in approximately 50,000 cycles, a notch cut was applied to 
the right of the hole in a direction perpendicular to the length 
of the specimen. The notch cut was administered by a 
jewelers saw blade or wire EDM process 0.178 mm (7 mil) 
thick. The crack propagation area, shown in Figure 1, is 
where the crack is expected to propagate due to the notch cut. 

A neural network and Bayesian particle filter based machine 
learning application is presented to predict crack initiation 
life and crack growth life for constant amplitude stress cycles 
applied to notch pre-cracked Aluminum 7075-T6 rivet hole 
coupons. The crack initiation life covers over 60% of the total 
fatigue life. The unique feature of the machine learning 
application is that it will cover the entire fatigue life cycle. 

2.1. Fatigue Test Parameters 

Coupons were subjected to constant stress amplitude fatigue 
test on a servo-hydraulic MTS test machine. A cyclic load 
cycle with maximum load of 5 kN (1,124 lb) and a minimum 
load of 500 N (112.4 lb). This was done to prevent de-
bonding within the adhesive of the structural health 
monitoring system. The nominal geometry shown in Figure 
1, gave a nominal far field cyclic stress ranging from 11 MPa 
to 114 MPa (1.66 ksi to 16.57 ksi), with stress ratio R= 0.1, 
during each of the fatigue tests. The fatigue test was halted 
every 500 cycles to capture a digital photograph of the 
coupon surface and to collect ultrasonic pitch catch signals 
from the structural health monitoring system. The special 
surface engraving enabled an automated estimation of the 
surface crack length, which was recorded every 500 cycles. 

2.2. Structural Health Monitoring System 

The Structural Health Monitoring (SHM) system used 
consisted of an Acellent Technologies, Inc. SMART layer 
System with piezoelectric transducers and ScanGenie-II 
hardware.  The hardware produces a hamming windowed 
pulse in one transducer, which in turn creates a surface wave 
that travels through the specimen, interacts with the boundary 
conditions (including damage), and is detected in another 
transducer.  The transducers were configured in pitch-catch 
design such that three transducers, numbered 1—3, on one 
side of the hole act as actuators to generate the pulse and three 

transducers, numbered 4—6, on the other side of the hole act 
as sensors to detect the pulse; see Figure 2 (Iglesias, 2015). 

 

 

 
Figure 1. Fatigue test coupon geometry. 

 
 

 
Figure 2. Structural health monitoring system layout. 
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Reducing the raw sensor data to a damage index is necessary 
to establish a relationship with crack length.  One commonly 
used damage index uses Pearson’s correlation coefficient to 
relate the sensed signal from a damaged state to a baseline 
sensed signal (Vehorn, 2013). 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐼𝐼 (𝐷𝐷𝐼𝐼) = 1 − 𝜌𝜌𝑥𝑥𝑥𝑥 (1) 

where, 

 𝜌𝜌𝐼𝐼𝑥𝑥 =
𝐸𝐸��𝐼𝐼−𝜇𝜇𝐼𝐼��𝑥𝑥−𝜇𝜇𝑥𝑥��

�𝑉𝑉𝐷𝐷𝑉𝑉(𝐼𝐼)�𝑉𝑉𝐷𝐷𝑉𝑉(𝑥𝑥)
 (2) 

x and y are the independent and dependent variables, 
respectively, µ is the mean, E is the expected value, and Var() 
is the variance. 

3. SAMPLE RESULTS 

Sample results for one specimen are provided in Figure 3 
(Iglesias, 2015).  In this case, the specimen failed after 
slightly more than 50,000 cycles.  The black dotted line 
indicates actual crack size as measured optically.  The 
colored lines indicate damage index values for the nine 
unique paths from each actuator to each sensor.  Paths 
containing actuator 3 and sensor 6 do not exhibit high 
sensitivity; this is intuitive because actuator 3 and sensor 6 
are on the opposite side of the hole from the crack.  Paths 
containing sensor 5 appear to be the most sensitive to 
damage; however, their sensitivity decreases after about 
40,000 cycles.  Ongoing efforts are aimed at understanding 
this phenomenon.  Path 1-4 is the only path that exhibits a 
monotonic trend with fatigue life; therefore, it will be used to 
create a calibration curve for linking damage index to crack 
size. 

3.1. Experimental Results 

The results of fatigue test experiments are summarized 
in Table 1, grouped by initial notch size. For brevity only the 
number of cycles (in thousands)  required to achieve crack 
lengths, C, of 0.04 in (1 mm), 0.10 in (2.5 mm), 0.20 in (5 
mm), 0.40 in (10 mm), and 0.435 in (11 mm) are presented. 
The crack initiation cycles required to observe 0.04 in (1 mm) 
crack ranged from 7,500 to 22,000 cycles. The fatigue life 
ranged from 22,500 to 52,000 cycles. It can be observed from 
Table 1 that the fatigue cycles required to initiate and grow 
the cracks to failure generally decrease with the increase in 
notch length; however, there are outliers represented by 
fatigue performance of three coupons shown by dotted lines 
in Figure 4 which have higher notch lengths and yet they 
show higher fatigue life for crack initiation and fatigue 
failure. Some other factors such as favorable notch tip 
geometry and absence of defects must be at play governing 
the delayed fatigue crack initiation and growth. Moreover, 
the NASGRO and AFGROW simulations required though 
thickness crack growth governed by linear elastic fracture 
mechanics (LEFM). Some of these requirements may be 

violated in experiments and in practice. The crack appeared 
to inititate from a corner and grow through through the 
thickness before propagating to the edge. Hence, further 
fractographic examination and investigation of notch effects 
will be carried out in future experimental efforts. 

3.2. Fatigue Crack Growth Simulation And Analysis 

This effort consists of simulation and analysis of fatigue 
crack growth using the NASGRO and AFGROW software 
applications. The effort consists of four parts: (1) determining 
the Equivalent Initial Flaw Size (EIFS) for NASGRO and 
initial crack size for AFGROW, (2) calculating the stress 
intensity factor from the notch, (3) predicting crack growth 
using NASGRO and AFGROW, and (4) integrating 
structural health monitoring with NASGRO and AFGROW 
predictions to provide more accurate predictions of future 
crack size. Out of these, only the items 1 and 3 have been 
completed and emphasized in this work. 

The first part involves determining the EIFS.  This is 
done by taking measurements of crack size during the crack 
growth regime and back-extrapolating to zero cycles using 
the Paris Law [5] or one of its derivatives.  The EIFS forms 
the basis for predicting the number of cycles to crack 
initiation or critical crack formation. NASA recommends 
initial flaw sizes range from 0.005 in to 0.25 in, depending on 
manufacturing and inspection methods. For our simulation 
work, the EIFS predictions were carried out in NASGRO 
using selected fatigue life to failure cycles shown in Table 2, 
column 1.  The EIFS estimates presented in Table 2 are used 
for NASGRO NASFLA module using TC13 geometry. The 
NASGRO simulation results are summarized in Table 3. 

 

 

 

 
Figure 3. Damage indices and measured crack length. 

 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

4 

  
Figure 4: Cycles (Thousands) versus crack length, C 

 

Table 1. Thousands of cycles to reach crack lengths, C, of a 
given size, grouped by approximate notch size. 

C=0.04 C=0.10 C=0.20 C=0.40 C=0.44 
0.003 IN NOTCH  

22.0 26.0 31.0 37.0 37.5 
16.5 21.5 26.0 32.0 32.5 

0.007 IN NOTCH 
10.5 14.0 19.0 24.5 25.0 
19.0 23.0 28.5 34.0 34.5 
10.5 15.0 19.5 25.5 26.0 
10.5 14.0 19.0 24.5 25.0 
10.0 14.0 19.0 24.5 25.0 

0.008 IN NOTCH 
9.50 13.0 17.5 23.5 24.0 
11.0 15.5 20.0 25.0 25.5 
11.0 15.5 21.0 27.5 28.0 
11.0 14.5 18.5 23.5 24.5 
12.5 16.5 20.5 26.0 26.5 
13.5 17.5 22.5 28.5 29.0 
8.0 12.0 16.5 22.5 23.0 

0.010 IN NOTCH 
11.0 14.0 19.0 25.0 25.5 
7.50 12.0 17.0 22.0 22.5 
7.50 12.0 17.0 22.5 23.5 
19.0 27.5 39.0 51.5 52.0 
10.0 12.5 17.5 22.5 23.0 

0.012 IN NOTCH 
20.0 26.0 33.5 42.5 43.0 
9.00 13.5 18.5 24.0 24.5 
9.00 13.0 18.5 24.5 25.0 

 

Table 2. NASGRO predictions of number of cycles to 
failure for various initial flaw sizes. 

Life (Cycles) Initial flaw (in) 
23,000 0.0526 
25,000 0.0404 
30,000 0.0159 
35,000 0.0046 
40,000 0.0016 
43,000 0.0010 
51,000 0.0004 

The initial crack size input for AFGROW simulations 
was (Notch size + 0.5* Thickness). The experimentally 
observed crack length is AFGROW simulation crack length 
minus the notch length. This correction was applied to the 
AFGROW simulation output crack lengths. The number of 
cycles required to make an initial 0.0315 in (half thickness) 
was taken from the corresponding experimental observations. 
These cycles were then added to the AFGROW simulation 
results starting from this initial 0.0315 in observed crack 
length. The results of AFGROW simulation using NASGRO 
equation and Harter-T method, provided in the first and 
second rows of each entry, respectively, are shown in Table 
4. The first column shows the initial crack size input provided 
to AFGROW software for running the simulation. 
Subsequent columns of Table 4 show the observed crack 
lengths C, and corresponding thousands of cycles required to 
reach those crack lengths, after applying the correction 
adjustment described above.  The results presented in Table 
3 and Table 4 can be compared to experimental data 
presented in Table 1, to determine under what conditions the 
predictions are valid, and if not, how inaccurate they are.   

 

Table 3. NASGRO predictions of thousands of cycles 
to reach selected crack lengths. 

Initial 
flaw (in) 

c=0.04 c=0.10 c=0.20 c=0.40 c=0.44 

0.0526 - 6.32 15.1 22.6 22.9 
0.0404 - 8.45 17.2 24.7 25.1 
0.0159 4.92 13.4 22.1 29.6 30.0 
0.0046 9.91 18.4 27.1 34.6 35.0 
0.0016 14.9 23.3 32.1 39.6 40.0 
0.0010 17.9 26.3 35.1 42.6 43.0 
0.0004 26.0 34.4 43.2 50.6 51.0 
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Table 4. AFGROW predictions of thousands of cycles 
to reach selected observed crack lengths C; first line is 
NASGRO equation, second line is Harter-T method. 

Initial 
Crack 
Size 
Input 
(in) 

C=0.04 C=0.10 C=0.20 C=0.40 C=0.44 

0.0411 8.50 17.5 28.0 37.5 38.0 
0.0411 8.00 14.0 21.0 27.0 27.5 

      
0.0383 11.0 20.0 30.5 40.5 41.0 
0.0383 10.5 16.5 23.5 30.0 30.5 

      
0.0392 11.5 21.5 31.0 41.0 41.5 
0.0392 11.0 17.0 24.0 30.5 31.0 

      
0.0434 19.5 29.0 39.0 48.5 49.0 
0.0434 19.5 25.5 32.5 38.5 38.7 

      
0.0341 23.0 32.0 43.0 53.0 54.0 
0.0341 22.5 28.5 36.0 42.5 43.0 

 

NASGRO and AFGROW both offer crack initiation or 
crack formation capabilities; however, data and inputs 
needed for reasonably accurate estimates are currently not 
available. Hence, both packages were unable to provide 
estimates that match with experimentally recorded data. 
Figures 4 through 7 provide graphical comparison of 
NASGRO, and AFGROW simulation results to the 
experimentally recorded fatigue cycle counts required to 
achieve selected crack lengths tabulated in Tables 1, 3, and 4. 
Significant mismatch between simulation results and 
experimental results is evident for crack initiation and growth 
up to about 0.2 in (5.1 mm) crack size. It should be noted that 
about 60% fatigue life is expended in crack initiation and 
more that 80% fatigue life is exhausted by the time fatigue 
crack grows to 0.2 in (5.1 mm). This motivates additional 
future work to gain accurate simulation results matching the 
experimental and eventually practical fatigue scenarios. 

The NASGRO results match more closely to 
experimentally measured data presented in Table 1, 
particularly towards the end of fatigue life. Using AFGROW, 
the Harter-T method results are closer match with 
experimental results than the NASGRO equation, albeit with 
significant degree of mismatch for smaller cracks. 

For smaller fatigue life cycles, 23,000 and 25,000, 
AFGROW did not produce satisfactory simulation results 
using the recommended initial crack size inputs; however, 
using higher values of initial flaw sizes of 0.0526 in and 
0.0404 in simulated those fatigue life estimates, shown in 
Table 2. Since, an estimate of cycles to achieve crack lengths 

of 0.04 in cannot be made from initial flaw sizes greater than 
0.04 and are omitted from the table. The results of NASGRO 
simulations, for these lower fatigue life cases, in comparison 
with experimental results are shown in Figure 8 and 9. These 
results show greater mismatch between simulation and 
experimental results from crack initiation to about 0.4 in (10 
mm) crack length. The simulation results show that for given 
number of cycles the crack length estimate is much higher 
than that experimentally observed. This motivates further 
investigation of crack initiation, closure effects, and 
deviations from LEFM models. 

 

 
Figure 4: Comparison 1 of AFGROW, NASGROW results 

with Experimental results 

 

 
Figure 5: Comparison 2 of AFGROW, NASGROW results 

with Experimental results 
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Figure 6: Comparison 3 of AFGROW, NASGROW results 

with Experimental results 

 
Figure 7: Comparison 4 of AFGROW, NASGROW results 

with Experimental results 

 
Figure 8: Comparison 1 of NASGRO results with 

Experimental results 

 
Figure 9: Comparison 2 of NASGRO results with 

Experimental results 

 
Figure 10: NARX modeling of crack growth 

 

4. NARX MODELING OF CRACK GROWTH  

Nonlinear AutoRegressive models with eXogenous input 
(NARX) artificial neural network were fitted to crack lengths 
less than 5.0 mm. These were then used to predict crack 
growth longer than 5.0-mm. The crack length estimates are 
both shorter and longer than the actual experimentally 
measured crack lengths, within a 3% error margin. The 
results are shown in Figure 10.   

The following equation defines the proposed NARX model:  

 y(t) = f(y(t−1), y(t−2) …, y(t−ny), u(t−1), u(t−2), u(t−nu)) (3) 

where f is a non-linear function which will be approximated 
by multi-layer perceptron (MLP) NARX neural network, y(t) 
and u(t) are the output crack lengths and the input cycles, 
respectively, and ny is the output delays and nu are the input 
delays. Equation 3, represents the non-linear NARX model 
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fitted to the output and input signals. Output y(t) is non-
linearly auto-regressed on prior values of the output crack 
lengths and prior values of the number of fatigue cycles 
corresponding to those crack lengths. The technical 
capabilities of NARX models and their applications are 
described in literature (H. Siegelmann et al, 1997). 

The NARX model was implemented with a feedforward 
neural network model in Matlab code. The model can be used 
to find an approximate value of non-linear function f fitted to 
fatigue crack length data by NARX neural network. Scaled 
conjugate gradient backpropagation was used for training the 
NARX neural network. Two input delays (nu) and two output 
feedback delays (ny) were used. The 90% of fitted crack 
length data was used for training of NARX neural network, 
and 5% each were used for validation and testing. The 
network had 10 hidden layers, a learning rate of 70 and had 9 
neurons per layer with 40 epochs. 

 

5. PARTICLE FILTERING RESULTS 

MatlLab-based implementation of fatigue crack growth 
particle filtering software (D. An, et al, 2013) was adopted 
for our experimental data. More in-depth applications of PF 
methods to fatigue crack growth are available in technical 
papers (E. Zio and G. Peloni, 2010). The applied Matlab code 
consists of problem definition, prognostics using PF, and 
post-processing for output of results. Initial crack size, in 
meters, was set to normal distribution ~N [0.002, (5.0x10-4)2]. 
Paris model for long fatigue crack length (ak) was assumed to 
be applicable to the experimentally measured fatigue crack 
growth data, zk. The Paris model in state transition function 
form is as follows: 

 𝐷𝐷𝑘𝑘 = 𝐶𝐶𝑘𝑘(1.2∆𝜎𝜎�𝜋𝜋𝐷𝐷𝑘𝑘−1)𝑚𝑚𝑘𝑘𝐼𝐼𝑑𝑑 + 𝐷𝐷𝑘𝑘−1 (4) 

The model parameters, Ck and mk, and ak are estimated using 
zk at every 500 cycles under constant stress amplitude of ∆σ 
= 114 MPa; the factor of 1.2 is used to account for the notched 
rivet hole coupon geometry. Initially, true crack sizes are 
generated using mk = 3.4 and Ck = 1.03x10-10. Initial 
lognormal distribution for Paris law constant C was assumed 
to be ln(C0) ~N [-23, 1.122]. Initial Paris law exponent m 
distribution was set to ~N [3.4, 0.22]. The measurement noise 
was set as ~N [0.0001,0]. Bayesian updating of posterior 
estimates using normal distribution likelihood function of 
priors was applied. The critical crack size and maximum 
stress amplitude were taken to be 10 mm and 114 MPa, 
respectively. A significance level of 5% was used to construct 
90% confidence intervals, and 500 particles were used. The 
results of particle filtering prognostics are shown in Figure 
11. 

 
Figure 11. Crack length estimates using Particle Filtering. 

 

For this coupon, the 10 mm crack length was reached at 
37,000 cycles, which matches well with the median 
prediction of 38,000 cycles; however, these results are very 
unstable depending on the material properties (C, m, a) 
statistical distributions input and PF Bayesian model 
updating, including random initializations. The estimates of 
crack lengths are consistently biased to shorter lengths than 
the corresponding actual experimental measurements. The 
PF-based prognostics technique was demonstrated to work 
well with off-line recorded fatigue crack length 
measurements, for selected number of coupons. The margin 
of error was initially significantly larger than the NARX 
technique; however, the PF technique resulted in 
diminishingly smaller errors as the updating progressed to the 
terminal threshold crack length, the end of fatigue life.   

The material properties (C, m) and crack length (a) statistical 
distribution parameters may not always be applicable to live 
real-time monitoring and fatigue prognostics crack initiation 
and growth. It is desirable to conduct such trials to further 
enhance these PF and other hybrid prognostics techniques. 

These results demonstrate the need for hybrid techniques 
combining specific customized crack growth prior results 
obtained from databased machine learning methods like 
NARX approach with Bayesian updating particle filtering 
methods. It is desirable to test these techniques for live real-
time implementation of fatigue crack prognostics. 

6. CONCLUSIONS AND FUTURE PLANS 

A structural health monitoring system was shown to be 
sensitive to crack growth in aluminum 7075-T6 coupons 
subject to fatigue loading.  AFGROW and NASGRO 
simulations of crack growth in the same material were shown 
to be accurate for crack sizes greater than 5 mm.  The NARX 
technique was shown to accurately simulate crack sizes 
longer than 5 mm through non-linear neural network based 
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machine learning.  Experimentally recorded off-line crack 
growth results were combined with statistical material 
properties using particle filtering to conduct crack growth 
prognostics; initial results demonstrated the applicability of 
PF technique to off-line recorded fatigue crack growth. 

Future work will incorporate the combination of NARX 
technique with the particle filtering to accomplish accurate 
crack growth prognostics, in live real-time setting.  
Subsequently, the structural health monitoring data will be 
incorporated into the particle filtering technique to provide 
accurate estimates and prognostics of individual fatigue test 
application. 
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