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ABSTRACT 

Operational data from the target system is widely considered 

a pre-requisite for implementation of PHM, as it used as 

training data. Often this data is not available to PHM 

practitioners because health monitoring capabilities may not 

be installed in legacy systems unless there is a guarantee that 

a PHM framework will be viable/profitable. This research 

presents an approach in which PHM can be implemented 

without any operational data and is generic enough to be 

applied to any electronic circuit provided a simulation model 

of the system with acceptable fidelity can be developed. The 

research also introduces the Space-Filling Design, which can 

be used to generate the training data in a systematic, 

statistically valid framework, and is especially valuable for 

complex circuit with a large number of components. This 

design provides sufficient coverage of the parametric design 

space to be representative of the unavailable operational 

data, as well as incorporating the effects of parameter 

interaction on the simulated response of the system. Most 

PHM studies in literature ignore the effect of the degradation 

of interacting components. We show, how such an 

assumption can lead to incorrect fault diagnosis/RUL 

estimation and propose methods to screen for two-way and 

higher order interactions. Finally, we use various deep 

learning approaches in conjunction with physics-of-failure 

models for individual components to diagnose circuit faults 

and estimate circuit RUL. This simulation-based fusion 

prognostics approach is a holistic framework for all types of 

electronic circuits. 

1. PROBLEM STATEMENT 

 Electronic circuits are a vital in the reliability and 

availability of industrial systems. Unexpected circuit failures 

in such systems can have severe implications monetarily and 

from the point of view of safety. In most cases, these failures 

can be related to faults, which could be either catastrophic or 

parametric (drift from nominal value) [1]. Systems have 

multiple simultaneously degrading components and because 

of their interactions and collateral damage, system RUL 

computation is more than a simple combination of individual 

component RULs. Circuit failure prevention requires 

methods for the early detection and isolation of faults and 

prediction of RUL of the failing circuit [1]. Most studies in 

literature focus on these methods but only for individual 

components. While useful, this misses the bigger picture, 

because system-level RUL is of greater interest to 

maintainers of these systems. Fault diagnostics and 

prognostics in analog circuits are made challenging by the 

presence of component tolerances, the complex nature of the 

fault mechanisms [1]. For system-level prognostics, [2] 

setup system level prognostics by using a particle filtering 

based approach where they assume that the system state 

function and the measurement function is known. They use 

an example of a simple full wave rectifier. [3] use successive 

refinement of circuit’s response to a sweep signal, to extract 

features for fault diagnosis. The fault diagnostics problem is 

solved as a pattern recognition problem using kernel 

methods with the assumption that a sweep signal can excite 

a circuit for feature extraction of faults being pivotal. We 

propose a method a new fusion prognostics based approach 

that has no such limiting assumptions.  

2. EXPECTED CONTRIBUTIONS 

As mentioned previously, the proposed approach has no 

limitations except for the assumption that the circuit can be 

modeled in a modeling software like PSpice. In most 

published studies, interactions between degrading 

components are ignored. This study will show that such an 

exclusion could result in potentially disastrous results. We 

also tackle the issue of generating training data in a 

systematic way to have sufficient coverage of parametric 

space. We also try to improve the estimation of two-way and 

higher order interactions by making the estimation with as 

fewer degrees of freedom as possible. Finally, we try to 

improve state of the art deep learning architectures and try 

to come up with new architectures, which work best for 

circuit fault diagnosis and prognosis. This represents a 

comprehensive PHM framework that is universally 

applicable.  

3. RESEARCH PLAN 

Task 1: Model the circuit in a modeling software using 

PSpice 

Task 2: Conduct a FMMEA (Failure Modes, Mechanisms, 

and Effects Analysis) on the circuit components to identify 

the list of component parameters in PSpice that are 

indicative of component’s dominant degradation 

mechanism(s). 

Task 3: Conduct a design of experiment involving the 

selected parameters of every component, to ascertain the 

components whose degradation has a significant impact on 

the circuit output.  

Task 4: For the significant components only, generate the 

training data by varying them in a one-at-a-time setting 

where other components are held constant.  
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Task 5: Experiment with training of different deep learning 

architectures in an effort to improve diagnostic accuracy. 

Task 6: Conduct a thorough literature search and along with 

previous CALCE experience, collect physics of failure 

models for the different failure modes of the different 

significant components.  

Task 7: Use the best performing architecture from task 5 and 

replace the final layer by a regression layer. Perform training 

again to predict component degradation. Use prediction and 

the failure models from task 6 to trend the component to 

failure and arrive at the circuit RUL.  

As a proof of concept, we consider an example of a double 

switch forward converter circuit which has 17 components. 

Additionally, we also compare results to a 130 component 

circuit that we worked on but cannot share the details 

because of confidentiality concerns. We refer to these 

circuits as Circuit A and Circuit B respectively. PSpice has 

multiple parameters for each component for simulation of its 

behavior. The challenge is to sift through these parameters 

to figure out how different failure mechanisms can be 

simulated through a change in these parameters. For 

example, 14 parameters for diodes, 6 parameters for 

capacitors, 40 for bipolar junction transistors and 50 

parameters for MOSFETs. FMMEA enables the 

identification and prioritization of failure modes and 

mechanisms for the system components. Based on the 

dominant failure mechanisms identified in the FMMEA, we 

can select only those PSpice parameters that are indicative 

of the component degradation via the dominant mechanisms. 

Because of the consideration of multiple parameters for 

some components, we now have 25 parameters for Circuit A 

and 164 parameters for Circuit B.  

3.1. Work Performed 

Parametric space of a system is the entire region where the 

system operates or breaks down i.e. it is the conjunction of 

all the components of a circuit from their open circuit to the 

nominal to their short circuit condition. It might not be 

possible to generate training data in regions where it is 

difficult to carry out experiments. For example, in an analog 

circuit, it is usually difficult/not possible physically 

experiment with active components and hence training data 

cannot be generated for the same. If a simulation model can 

be developed in PSpice, better coverage of the design space 

of the parametric space can be achieved. In order to 

optimally explore the parametric space, a special experiment 

called space-filling design is used. There are various 

construction methods for space-filling designs but we use the 

Maximum Entropy designs. These designs maximize the 

Shannon information [4] of an experiment.  
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response values at two different design points, xi and xj. For 

the same number of runs (simulations), Maximum Entropy 

designs provide a higher coverage of the parametric space as 

compared to fractional factorial designs. The number of runs 

(simulations) required to estimate two way interactions 

among X parameters is (𝑋
2
). Hence, for estimating main 

effects and two-way interactions we would require, for 

circuit A, 325 runs (simulations), and for circuit B, 13530 

runs (simulations). Because of this excessive number of runs 

(simulations) and the associated simulation time in PSpice, 

we estimate only the main effects from the initial space-

filling design. The number of significant main effects are 10 

for Circuit A and 46 for Circuit B. Next, we use the concept 

of supersaturated designs where we can estimate more terms 

than we have the degrees of freedom for [5]. A general 

principal in supersaturated designs is that the number of 

terms that we have to estimate should not be more than twice 

the number of runs (simulations) we have [5]. Hence, we can 

estimate all two-way interactions using just 150 additional 

runs (simulations) for Circuit A and 6680 additional runs 

(simulations) for circuit B. We estimated that 30 parameters 

(10 main effects and 20 interactions) were significant for 

Circuit A and 138 parameters (46 main effects and 92 two-

way interactions) were significant for Circuit B. Even 

though they are statistically significant, they might not cause 

the output waveform to degrade beyond predefined limits. 

We do a one-at-a-time study on these significant parameters 

by varying each parameter from -75% to +75% of the 

nominal while other parameters are held constant at their 

nominal values. Now, we can reduce the set to only those 

parameters that cause the waveform to go outside at least one 

of the thresholds. This leads to fewer significant parameters, 

20 total parameters (5 main effects and 15 two-way 

interactions) for circuit A and 36 total parameters (4 main 

effects and 32 two-way interactions) for circuit B and hence 

fewer classes of diagnosis for the next step. However, more 

important are the trends (Figure 1), which show that, R5, by 

itself causes waveform peak to fall below the threshold when 

it degrades by 135% of its nominal value. However, when 

R27 and Vs2 are both degrading together, they only need to 

degrade by 115% to cause the waveform peak to go below 

the threshold. Similar patterns are observed by comparing 

the degradation of other single components and their 

interactions with other degrading components for Circuit A 

and even for circuit B. Hence, ignoring interactions of 

degrading components could have potentially disastrous 

effects. Next, the training data is generated for the deep 

learning networks using the same one-at-a-time study 

format. We start by generating 5000 samples per class, 

taking advantage of the entire waveform for classification 

purposes and not just the output voltage peak. When circuit 

parameters are far from their nominal values, PSpice 

sometimes runs into convergence issues. When this happens, 

PSpice increases the sampling rate, which causes the output 

file sizes to be of different lengths across different training 

samples even in the same class. Instead of undersampling 

some training samples and oversampling others to come to a 

constant length for every training sample, we plot the entire 

voltage series without changing its sampling rate and convert 

the plot into an image. This ensures that we do not lose out 

on any waveform features due to undersampling. These 



images can now be used as an input to deep neural networks, 

for image classification (fault diagnosis).  

Since deep learning is not an exact science, we experiment 

with different deep learning architectures, in order to 

ascertain the architecture that provides the best classification 

accuracy. The architectures we consider are VGG16 [6], 

GoogLeNet [7] and ResNet50 [8]. We also experiment with 

different sizes and number of convolution layers, different 

activation functions, removing pooling layers, different 

settings for the backpropagation algorithms etc. We obtain 

the following result for Circuit A. For circuit B, the 

classification accuracies are poor even in the case of 

Renset50 because the within-class variance is greater than 

the between-class variance. 

Remaining Work 

a) Current research in statistics in restricted to two-way 

interaction screening in high dimension experiments [9]. 

However, using advanced analysis techniques like 

regularized regression to solve the ill-poised problem we 

hope to estimate two-way and higher order interactions 

using fewer runs (simulations) as a part of remaining work. 

b) Develop a library of physics of failure models for different 

failure mechanism for different components. 

c) Currently, there are many pixels being wasted in the square 

image of the waveform where there is no waveform. 

Therefore, we intend to develop a new representation for 

the waveform to reduce pixel wastage.  

d) We will try to improve state of the art deep learning 

architectures and try to come up with new architectures, 

which work best for circuit fault diagnosis and prognosis.  

 

4. Conclusion 

We demonstrate a comprehensive PHM framework that can 

be applied to any circuit even if it does not have operational 

data. Using design of experiment enables us to study of 

interaction among degrading components. This is 

particularly significant as most studies in literature focus on 

degradation of individual components and not their 

interaction with other degrading components. Risks of 

ignoring interactions are demonstrated and techniques to 

explore higher order interactions are proposed. These results 

can help circuit designers improve their circuits. 

Additionally, we take advantage of the benefit in using 

fusion-based prognostics as opposed to a purely data-driven 

approach. This benefit is analogous to the benefit accrued in 

using prior information as opposed to an uninformative prior 

in Bayesian analysis. 
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Method Classification 

Accuracy 

Time 

VGG16 94.19% 5 hours 

GoogLeNet 97.39% 8 hours 

Resnet 50 98.79% 10 hours 
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