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ABSTRACT

Manufacturing is seeing a significant push toward digitization
of processes and decision making. This push is enabled by
the increased availability of data. Yet the work of the main-
tenance team, one of the core subsystems in any production
line, remains a largely human endeavor. It involves manual
work on the equipment and data collection by maintainers,
which itself involves free-text and pre-specified categories or
controlled vocabulary, rather than collection via sensors. Of-
ten this data is un-useful, in that it does not support the digi-
tization of work. This paper presents an approach using Hu-
man Reliability Analysis (HRA) to identify the human errors
associated with entering un-useful data. A Cognitive Task
Analysis (CTA) is created, based on deconstructing the indi-
vidual actions and decisions performed by maintainers in this
process, backed by cognitive models to ground the task anal-
ysis in theory. A breakdown of human error modes for each
task is provided as a list of Unsafe Acts (UAs), along with
key contextual and organizational considerations, given as
performance-shaping factors (PSFs). To demonstrate usage
of this CTA, initial instantiation of a common HRA frame-
work is provided as a case study, both to estimate base hu-
man error probabilities (BHEPs) and to motivate a discussion
around initial risk mitigation strategies.

1. INTRODUCTION

In Manufacturing, there is a significant push toward the dig-
itization of processes and decision making by increasing the
level of automation and networking via cyber-physical sys-
tems (the so-called “Industrial Internet of Things”), and Ma-
chine Learning methods that can parse useful patterns from
the data they generate. As such, this push toward being
“smart” is largely driven by the availability of this data;
whether for analysis, decision guidance, or the training of
Artificial Intelligence (AI) systems. One of the core subsys-
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tems in any production line is the maintenance team, which
remains a largely human endeavor, despite disciplines like
Prognostics and Health Management (PHM) that are mak-
ing headway toward “smarter” maintenance. Consequently,
the historical data needed for research and development of
AI-assisted maintenance frameworks is often coming di-
rectly from humans, and is almost never in an immediately
computable form, but as natural language text, full of mis-
spellings, jargon, and abbreviations (Sexton et al., 2017).

1.1. Why Does it Matter?

The most obvious benefit to regular maintenance is reduced
machine downtime, but this can come at a cost; over-
scheduled maintenance costs a great deal in labor, and so
a large cross-section of small-and-medium-sized enterprises
(SME’s) still rely on reactive maintenance (Thomas, 2018).
The investigative process of the technicians is often recorded,
making these records a source for data that is rich with tacit
knowledge about system- and unit-level behavior. This could,
in theory, be used for prognostics, diagnostics, and investiga-
tory analysis/suggestions (Brundage et al., 2017).

The ability to quickly parse through and learn from this data,
and then automatically suggest diagnostic actions, would
be invaluable—especially when the time spent diagnosing
is commonly longer than the time spent actually repairing
the machine (Kegg, 1984). Additionally, as the experienced
maintenance workforce ages and fewer young people choose
to enter the field, a structured data format to preserve the
“mental models” of the expert technicians is in high demand,
to both assist root-cause analysis and to train new work-
ers more efficiently (Pantförder et al., 2017; Loch & Vogel-
Heuser, 2017). The unstructured data actually being pro-
duced, however, makes this type of analysis nearly impos-
sible without highly intensive studies, and drastic behavior
intervention in regards to data input and management.
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1.2. Proposed Work

To deal with this, one might enforce data-entry in a graphical
user-interface (GUI) into pre-specified functional categories
(generally using some form of controlled vocabulary). This
is not always successful, and consistent reports from industry
indicate that data entry remains a process fraught with sig-
nificant errors (Unsworth et al., 2011; Molina et al., 2013).
These human errors are unintentional actions or decisions1

(whether slips, lapses, or mistakes), which lead to undesir-
able outcomes —in this case, the recording of un-useful data.
Here we define “un-useful data” as mistake-prone, inconsis-
tent, or incomplete data, recorded in a way that is not suffi-
ciently structured for use in analytics as needed by an orga-
nization. Quantifying and managing sources of human error
is a primary concern of Human Reliability Analysis (HRA).
Applications of HRA methods to manufacturing are ongo-
ing (Schemeleva et al., 2012), but there remains a need for
user-based, error resistant data collection within manufactur-
ing maintenance. This paper offers a framework and method-
ology for applying HRA to quantify and understand human
errors associated with entering un-useful maintenance work-
order (MWO) data into a controlled database (DB).

2. BACKGROUND

This data-entry problem is not a new one. Many research
endeavors, and many company dollars, have been spent on
“solutions” to investigatory-data-entry errors to track mainte-
nance on the shop-floor. Of course, this problem is also not
limited to maintenance, or even manufacturing, and much of
the current field is influenced by advances in data structur-
ing in Medicine (though their approach has severe limitations
when applied to Engineering domains, as will be discussed).

2.1. Previous work in Data Structuring

There have already been some successes in mitigating human
data-entry error by automatically parsing unstructured natu-
ral language records e.g. the medical field. Patient medical
records have a number of similarities with MWO’s, since
both outline symptoms and diagnoses, along with actions
taken, all via unstructured text. Much of recent medical
research has been directed toward mining text from patient
records (Heinze et al., 2001; Tremblay et al., 2009; Zhou et
al., 2006). However, it is important to acknowledge signifi-
cant advantages when dealing in medical records, compared
to the engineering domain of manufacturing maintenance: (1)
data-sets are often larger, covering longer time-spans, and
(2) medicine has existing controlled vocabularies with wide
adoption by experts.

One approach to managing MWO data input in manufac-
turing comes from Computerized Maintenance Management
Systems (CMMS), which have gained traction in the PHM
1distinguished from intentional violations

community of late; they include names like SAP Intelligent
Asset Management, and IBM’s Maximo. In essence, these
systems revolve around mitigating error by enforcing a strict
hierarchy of known system entities and behaviors. This man-
ifests as interacting sets of controlled vocabularies, which
limit the “words” available for use in tracking work-orders.

A hallmark of this approach is the ever-present drop-down
menu, where one categorizes from a long list of options
which thing went wrong, and how, followed by the action-
steps taken to resolve the issue. Multiple users of these sys-
tems report that such restrictions constantly lead to cluttered
GUIs, compounded with a desire to select “miscellaneous”
categories and explain details by hand (Sexton et al., 2017).
If a “miscellaneous” classification is generally un-useful for
analysis, then these systems are therefore plagued by the hu-
man errors of their own.

The other approach involves recent progress in Natural Lan-
guage Processing, (e.g., Named Entity recognition, document
classification, etc.) where insights can be gained by discov-
ering latent patterns in text through Machine Learning meth-
ods. The key problem with utilizing these tools comes from
the lack of quantity, as the number of work-orders is simply
not enough for these tools to work with certainty in what-
ever specific manufacturing domain they occur in. The jargon
and abbreviations are often specific to not only manufactur-
ing domains, but even individual production lines or between
teams of staff, making large-scale statistical inference incred-
ibly difficult.

2.2. HRA Background

The goal of HRA methods generally is to quantify a Human
Error Probability (HEP) for some pre-determined task. First
generation methods were heavily based on reliability engi-
neering and probabilistic risk assessment methods from Nu-
clear and Aviation domains, as a convergence of reliability
in systems research and the burgeoning Human Factors field.
However, despite some successes, a key drawback to their
usage was a lack of contextual and human cognitive, behav-
ioral, and social information. Second-generation methodolo-
gies began to appear near the turn of the century, starting
with CREAM in Hollnagel, 1998. These attempt to address
shortcomings of the first generation of tools, through careful
structuring of their methods, usage of classification schemes
for human errors, and cognitive justification for models they
used in representing human action.

The process of HRA involves breaking down a “task” in ques-
tion into sub-tasks that address salient levels of abstraction for
analysis. These are used to apply available models of cogni-
tion at those levels, to succinctly specify the human actions
taking place during the task. This is a Cognitive Task Anal-
ysis (CTA). Once this process is completed, a set of possible
human errors at each sub-task, called Unsafe Acts (UAs), are
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Table 1. Summary of key cognitive theory used

Decision Point Theory Reference

1) Relevant causal/functional relationships Associative Strength Fazio, Williams, & Powell, 2000
2) Organization/Categorization Similarity-Choice Logan, 2004

enumerated. Then, Performance Shaping Factors (PSFs) are
determined, which modify UA severity per environmental,
physical, or mental context during task performance. Finally,
an error modelling framework for quantifying these variables
is employed to calculate the actual HEP, which can be used
to design risk mitigation strategies for this task.

3. THEORETICAL COGNITIVE FRAMEWORK

To begin to address these issues, it is necessary to measure
the risk for human error when utilizing current systems, to in-
form the solutions being developed for the future. This work
will focus on the specific interaction between Human agents
(the technicians and operators entering data), the GUIs, and
organizational context for inputting structured maintenance
work-orders. In practice, this maybe done in multiple man-
ners:

• Free-form (natural language processing)
• Controlled Vocabulary (DB Schema)
• Hybridized (user tagging)

Our objective is to build a guiding model of the data-entry
(human+machine) system, to assist in e.g., calculating the
probability of “human error” upon recording maintenance
work-order cause and effect designations. Because CMMS
systems are undergoing increasing adoption, and because a
push for adoption of Smart Manufacturing methodologies is
being felt even by small and medium enterprises (SME’s), we
focus on the human errors encountered when attempting to
categorize a diagnosis to match a controlled-vocabulary DB
schema. In this case, human error will be defined as the input
of “un-useful data”, i.e., data that is unstructured, and not suf-
ficiently usable for the post hoc detection of patterns for anal-
ysis and diagnostics. As a specific example encountered quite
often in our controlled-vocabulary case, this form of error is
encountered when a technician selects a field that enables his
ability to skip categorization (i.e., “misc”, or “other”), and
enter free-form text anyway (bypassing the intent of such a
system).

3.1. Cognitive Modeling of Activity

Starting from the occurrence of—and subsequent expert di-
agnosis contained within—a maintenance work-order, this
probability for error can be quantified through the modeling
of human behavior under such circumstances, corresponding
roughly to two “decision points”: 1) Causal and/or functional

relationship identification, through memory activation by As-
sociative strength; and 2) Categorization and other organiza-
tional decisions through similarity-choice selection. These
are discussed here in more detail, with an overview2 pre-
sented in Table 1.

Category-Item Associative Strength When a technician
has diagnosed a work-order’s core problem, according to his
own mental-model of the machine or system, the prospect
of recording this information, no matter the form, requires
him to conjure the related features associated with the break-
age. This is, in some ways, the core function of keeping such
maintenance work-order records: encapsulating the pattern
of system behavior surrounding some given breakage. Say
a technician is inputting a description and resolution for an
issue like “Leaking seal at machine #32”. He might subse-
quently bring to mind the surrounding circumstances, like
“hydraulic fluid,” “operator needs training,” or “accumula-
tor at low pressure.” In this way, multiple concepts — bro-
ken down as objects and attributes — become activated Items
from memory that surround the Category of “machine #32
seal brokenness”, in much the same way that Fazio et al.,
2000 treat “Auto-tires,” with respect to “Goodyear” and “Fire-
stone”.

Similarity-Choice Once a sufficient number of related fea-
tures have been recalled, the technician will be required to
select the ones that maximally meet his needs. This is a
key use of Similarity Choice Theory, originally set down as
such by Luce, 1977, though the topic has been loosely known
since at least Thurstone, 1927, and has seen many modifica-
tions and applications since (Luce, 1977). This theory posits
that the probability for a human to select some feature out
of several is the ratio of its importance to the sum of im-
portance weights across the feature-space. These weights
are related to the evidence that each feature “belongs” to the
category of choice. It is important to note that the techni-
cian’s “needs” are both categorical and temporal — he will
not want to spend more then the minimum time necessary to
translate his mental model (crystallized in the previous step)
into this data-recording GUI. Therefore, it might often be the
case with more ambiguous category-relations that error (i.e.,
free-form text input) will be inviting when under severe time-
constraints.

2The specific, cited sources in table 1 are only a selection, meant to be well-
representative of a larger body of work on the subject
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3.2. Theory Interaction and Implementation

There exists a clear directionality in the use of theories 1 and
2, starting with the recall of features related to a work-order
from the technician’s mental-model, followed a determina-
tion of specific features and their mapping to some data man-
agement system. The process culminates in a MWO record.
This “pipeline” may be followed by any of the three data-
input schemes discussed in previously.

While our study focuses on a mapping to controlled vocabu-
lary sets, there is some indication of decreased cognitive load
by recording natural-language/free-form input, which could
be due to step #2 (categorization) being unnecessary (and
therefore, “skipped”). Rasmussen, 1983 mentions that nat-
ural language is incredibly flexible in its ability to cover a
wide range of abstraction levels, while sacrificing categor-
ical/contextual information (Rasmussen, 1983). This makes
natural-language input an almost direct transcription from the
category-item associations step to the actual act of record-
ing in an iterface/GUI. Controlled-vocabulary systems, on
the other hand, necessitate an act of classification—of trans-
lation—so that the technician’s mental model will fit max-
imally into one of several pre-defined contexts, or (to use
Rassmussen’s terminology), “symbols”.

The internal item-category relationship must now become an
arbitrator over a feedback loop between searching the GUI for
information, and the act of classification itself. The search for
input mechanisms in a GUI will have bidirectional influence
on the the categorization process: one direction if, for exam-
ple, chosen features are not found in a drop-down list; or the
other, if a salient feature is actually remembered by seeing
it in the GUI. This dynamic process can, in turn, modify the
mode of information processing from controlled-search for
categories, to automatic detection (e.g., of habitual free-form
input). This categorization loop is therefore a central defining
factor in categorization error, and will be discussed in greater
detail as part of the cognitive task analysis outlined in Sec-
tion 4.

As for the hybrid data-entry method, it is important to note
that a lack of this feed-back loop dynamic is mentioned in lit-
erature as a distinct benefit to tagging-based systems, which
simultaneously allow free-form input to “skip” the classifi-
cation step, while providing symbolic and contextual rep-
resentation through larger-scale relationships called “Folk-
sonomies (Peters, 2009).

4. TASK ANALYSIS

To map the above cognitive modeling to specific tasks en-
countered during the act of categorization in data-entry, we
first conduct a Procedural Task Analysis (PTA). Then, us-

ing Bloom’s taxonomy for categories of cognitive skills 3

, (Adams, 2015) we we build a framework for applying our
cognitive theoretical models to tasks within the the PTA. This
framework is outlined as task analysis flowchart in Figure 1.

4.1. Procedural Task Analysis (PTA)

To retain a suitable scope for this work, we focus on the
higher-level cognitive load of decision-making while engag-
ing in the act of data-entry for a controlled-vocabulary DB
schema. This precludes the need for a sensory-based analy-
sis of GUI types, along with the accessibility of a data-entry
location on the shop-floor. Additionally, sufficient time is as-
sumed to be available for the technician to attempt entering
the MWO—or at least, some amount of time has already been
calculated or deemed reasonable for this task. The load of cal-
culating that time, based on external shop-floor pressures, is
outside the scope of this work.

This task is largely serial in nature, with a defined problem-
solving process taking place, beginning with the recall of
symptoms observed, and ending with the entry of (hopefully)
schema-compliant categories of MWO data. If time still re-
mains, a technician will first identify the parts of his knowl-
edge that are relevant to the task at hand, letting him (and
others) distinguish this MWO from other types; see Figure 1
(middle). If this is a routine or standard MWO, the recalled
features will map immediately to the already-learned DB cat-
egories, and the MWO will be entered. If not, the process
of organization requires a categorization loop; see Figure 1
(bottom). Here, tribal knowledge is iteratively translated into
candidate DB categories, until either a match is found, or time
“runs out”. This serial, temporal procedure is well-suited to a
PTA, as opposed to a more categorical, atemporal hierarchi-
cal task analysis (HTA) (Chandler et al., 2006).

4.2. Cognitive Theory Integration

Combining this proposed PTA with the theoretical cognitive
framework of Section 3 resuts in the Cognitive Task Analysis
(CTA) that we use to contextualize further reliability analysis.
The two chief decision points are notably of different cogni-
tive level, with the organization/categorization-loop requiring
the creation of abstract relationships between the technician’s
own knowledge and an imposed (and sometimes ambiguous)
controlled vocabulary—Bloom’s cognitive level of synthesis,
at the least. Meanwhile, the first decision is primarily con-
cerned with the recall of, and associative strength between,
elements of the technician’s knowledge alone (comprehen-
sion and analysis). As mentioned previously, analysis in this
work would be performed with preliminary cognitive theory
from Sinha, 2005 in mind, which indicates that tagging may
reduce cognitive load compared to categorization for the task

3The six categories defined by Bloom, in order of increasing complexity,
are knowledge, comprehension, application, analysis, synthesis, and evalu-
ation.
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Start End

3. Distinguish 
MWO by relevant

symptoms/features

5. Organize
symptoms  into DB
Schema, for future

7. Enter MWO
information into DB

(schema)

3.1 Recall  symptoms
in Issue/MWO

6. Categories 
match in DB?

4. Routine or
Standard

Procedure?
No 5.1 Map knowledge 

 into DB format

5.2.3 Locate
Relevant categories

in DB Interface

5.2.1 Translate
symptom features 

5.2 Categorize Knowledge into Controlled Vocabulary

No

6. Categories 
match in DB?

No

Yes

4. Routine or
Standard

Procedure?
No

Yes

5. Organize  
symptoms  into DB
Schema, for future

3.2 Identify  causal
and functional links

1. Assess available
time  

2. Sufficient  
time  

remaining?
Yes

8. Enter MWO
information into DB

(free-form)
End

No

Synthesis

5.2.2 Categorize
symptoms into DB

Schema  

Comprehension Analysis

Comprehenson

Evaluate

3.4 Classify  
MWO by relevant

symptoms/features

Analysis

3.3 Collect relevant
symptoms/features

3. Distinguish 
MWO by relevant

symptoms/features

Comprehenson ComprehensonKnowledge

Plan 5.2  

Perform 5.2.1, followed by
5.2.2. 
Both are performed
simultaneously with 5.2.3  

Figure 1. Top: Cognitive Task Analysis, built on procedural tasks and Bloom’s Taxonomy for congnitive levels.
Middle: Expansion of sub-task 3. Bottom: Expansion of sub-task 5.
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Table 2. PSF Definitions and Reference Codes

PSF Category PSF Code

Communication level of operator/customer to Technician Social A
Visibility and accessibility of system components Technological B
Time passed between investigation and reporting Organization C
Breadth of technician experience across MWO types Personal D
Availability and completeness of standardized procedure Organization E
Training in system functionality Organization F
Depth of technician experience in this MWO type Technological G
Time available for assessment Organization H
Technician problem-solving ability Personal I
Computer literacy of technician Personal J
Communication between management and shop-floor Social K
Human-system interface design Organization L

of structuring data-entry by utilizing only the first decision
point, skipping the second entirely.

4.3. Unsafe Act Definitions and Classification

Here we enumerate the unsafe acts (UAs) associated
with each task identified in Section 4, followed by the
performance-shaping factors (PSFs) involved for them (refer
to Table 2). We will first describe the UAs individually. This
will include a proposed classification under Reasons’s Error
Classification (Reason, 1990) to specify whether an error
is skills-based (SB), rules-based (RB), or knowledge-based
(KB). The UAs are placed into a context using our PTA,
followed by each PSF that context may echibit. finally, we
include a table outlining the UA/PSF structure with respect
to our PTA (Table 3).

Technician did not observe all symptoms relevant to the
MWO (SB) (Related task: 3.1) In this situation, some-
thing prevented the technician from detecting information he
needed, whether a lack of communication between the report-
ing operator or customer (PSF A), or a lack of accessibility
and visibility into the broken system (PSF B).

Technician does not remember significant symptoms (SB)
(Related task: 3.1) Depending on the amount of time that has
passed between the original MWO and when the technician
finally is able to monitor (PSF C), the technician may forget
information that was needed. Both this and the previous UA
are slips or temporary lapses.

Technician is unaware of relevant system architecture
or functionality at the requisite level. (KB) (Related
tasks: 3.2, 5.2.1) While identifying how recalled features of a
MWO are related, or while translating these relationship into
a computable format, there is a possibility that the technician
is missing underlying system-level knowledge that would in-

form his ability to infer causality or relationships. This could
be due to a lack of breadth of experience across types of ma-
chines (PSF D), the unavailability of standardized investiga-
tive procedure (PSF E), or even more generally, the amount
of training the technician has received. (PSF F)

MWO has features and/or symptoms completely unlike
previous experience (KB) (Related tasks: 3.4) This error
manifests both when a technician has insufficient depth of
experience in the specific case presented (PSF G), but also
in a lack of breadth of experience to extrapolate from similar
cases(PSF D). Both this and the previous UA require some
level of problem solving under incomplete information, mak-
ing them knowledge-based errors.

Selected MWO features are not relevant and/or MWO
type is incorrectly identified (RB) (Related task: 3.4) If a
technician selects MWO features, but they are not necessar-
ily relevant, it is mostly due to the application of a heuristic
or rule-of-thumb that cannot be applied here (i.e., rules-based
error). This can stem from a lack of available time (PSF H),
insufficient ability to problem-solve (PSF I), or again a lack
of depth of experience in this type of MWO (PSF G)

Technician misunderstands target use-case and function-
ality of a controlled-vocabulary CMMS (KB) (Related
task: 5.2.1) Here a technician must attempt to “transform” his
knowledge/understanding into what he believes to be a com-
putable format. It is possible for problems to once again stem
from not only a misunderstanding of the system they main-
tain (UA-3), but also of the goals and functions of the com-
puterized maintenance management system (CMMS) they
are tasked with utilizing. This leads to incorrect assump-
tions about the type of data that is useful for later analysis,
and about the level of abstraction/specificity needed in data-
entry. The former is highly dependent on the communication
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channels being used between management and the shop-floor
(PSF K), while the latter is more a function of the technician’s
computer literacy (PSF J)

DB schema does not contain appropriate problem code to
represent the MWO features (RB) (Related task: 5.2.2) In
this case, the perception that the schema is missing a problem-
code is either correct, in which case it is important that the
communication between management and the shop-floor is
always up-to-date (PSF K), or it is wrong, and the technician
may need to be more familiar with the detailed, technical be-
havior of the system in question (PSF G).

Technician does not apply appropriate problem code (un-
familiar with DB classification schema) (KB) (Related
task: 5.2.2) It may be that the technician selects a problem
code incorrectly, creating much less-useful data-set for the
future. This error is occurring during an active search, mak-
ing sch an error very knowledge-intensive. This is largely
impacted by the training received by the technician (PSF F)
and by the intuitive communication of meaning via the GUI
tool (PSF L)

Technician gives up searching prior to finding appropri-
ate problem-code. (RB) (Related task: 5.2.3) Depending on
how much time is available to perform this mapping intera-
tion (PSF H) and how easy it is to search or discover classi-
fications due to the software design (PSF L), the technician
may simply give up the search for ”appropriate” classifica-
tions, and default back to the closest thing he is familiar or
comfortable using.

5. CASE STUDY: CREAM HRA FRAMEWORK

The above work to develop the CTA, UAs, and PSFs, is
a necessary prerequisite to applying one of many available
frameworks to perform HRA. Three of the most commonly
used frameworks are the Nuclear Action Reliability Assess-
ment (NARA), Standardized Plant Analysis Risk (SPAR-H),
and the Cognitive Reliability and Error Analysis framework
(CREAM) (Kirwan et al., 2004; Gertman et al., 2005; Holl-
nagel, 1998). To determine the most appropriate methodol-
ogy for their own HRA case study, the National Aeronautics
and Space Administration (NASA) performed a peer review
in 2006, based on several selection criteria and capabilities of
the various methods (Chandler et al., 2006). Given its cus-
tomizability, and the generality of its foundational cognitive
functions, we proceed to apply CREAM. This is intended as
an example application of the task analysis constructed above,
and in no way implies that CREAM is the “best” HRA frame-
work for this task4. Instead, we wish to illustrate the value
of HRA for systematically dissecting the complex issue of

4Hollnagel states that “Although CREAM still appears to be used and refer-
enced [...] the method from my point of view is obsolete.” Newer frame-
works, such as FRAM, have since been proposed (Hollnagel, 2017).

ensuring data-quality to serve smart manufacturing technolo-
gies in maintenance, by providing high-level guidance on ini-
tial risk-mitigation and further refinement in one’s own oper-
ation. For a more in-depth discussion on applying CREAM
to modern analyses, though in a separate domain, the reader
is directed to Rashed, 2016.

CREAM, to the authors’ knowledge, has not been previously
used for determining HEP in MWO data-entry, and has seen
little-to-no application in data-entry errors, generally. How-
ever, CREAM has been applied to estimate HEP for the shop-
floor in a manufacturing setting, as seen in Schemeleva et al.,
2012.

5.1. CREAM Steps

This method was outlined by (Hollnagel, 1998). As a “2nd-
generation” HRA method, he proposes that all analyses must
be based on some cognitive or behavioral model of human ac-
tions. This is what actually generates errors, and is how we
have constructed Section 4. Additionally, the errors gener-
ated should be unified by a classification scheme, for which
we have used Reason’s error classification (see Table 3).
Error modes are further classified by the CREAM method
into three categories: Man-related, Technology-related, or
Organization-related. Finally, the connection between the
model and each individual error/classification must be struc-
tured via a standard method, which is outlined in the CREAM
methodology, as summarized by NASA (Chandler et al.,
2006). We certainly do not cover all of the steps involved
with applying CREAM directly, but at a high level, the pro-
cess consists of roughly five steps.

(1) the task sanalysis, as we have done above in a procedural
task analysis. (2) Hollnagel, 1998 defines 15 cognitive activ-
ities to define how a human engages with each task/sub-task.
Containing activities like “identify,” “record,” or “execute,”
these overlap significantly with Bloom’s taxonomy, making it
possible to map our proposed CTA sub-tasks to the CREAM
cognitive activities, as needed (see Section 5.3. (3) each sub-
task is assigned a human function, out of the four available
(Observation, Interpretation, Planning, and Execution), that
is possible to perform the cognitive activity. (4) each human
function (O,I,P,E) can manifest errors in 2-5 specific failure
modes defined by Holnagel as occurring in a function-activity
combination5, which must be mapped to our UA definitions
for validation. Each valid failure mode has a so-called “ba-
sic human-error probability” (BHEP) value —these were pro-
vided by expert elicitation during CREAM’s construction. (5)
though the BHEPs set a baseline, every instance of a real sys-
tem will have environmental adjustments—the PSFs— that

5For example, “O3: observation not made,” or “E4: Action out of sequence.
Only certain function-activity combinations are possible types of human
error; e.g. the activity Identify can be combined with only Interpretation
function failure modes I1: Faulty Diagnosis, I2: Decision Error, and I3:
Delayed Interpretation

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019
Ta

bl
e

3.
U

ns
af

e
A

ct
D

efi
ni

tio
ns

an
d

m
ap

pi
ng

to
PT

A
an

d
PS

Fs

PT
A

 C
od

e
D

es
cr

ip
ti

on
U

ns
af

e 
A

ct
s

U
A

 C
od

e
Er

ro
r 

C
la

ss
if

ic
at

io
n

PS
F 

C
od

es
PS

F 
C

at
eg

or
y

T
as

k 
3:

 D
ist

in
gi

sh
 M

W
O

 b
y r

ele
va

nt
 sy

m
pt

om
s/

fe
at

ur
es

T
as

k 
3.

1
R

ec
all

 sy
m

pt
om

s i
n 

iss
ue

s/
M

W
O

T
ec

hn
ic

ian
 d

id
 n

ot
 o

bs
er

ve
 al

l s
ym

pt
om

s r
ele

va
nt

 to
 

th
e M

W
O

U
A

-1
SB

A
So

ci
al

B
T

ec
hn

ol
og

ic
al

T
ec

hn
ic

ian
 d

oe
s n

ot
 re

m
em

be
r s

ig
ni

fic
an

t s
ym

pt
om

s 
U

A
-2

SB
C

O
rg

an
iza

tio
n

T
as

k 
3.

2
Id

en
tif

y c
au

sa
l a

nd
 fu

nc
tio

na
l 

lin
ks

T
ec

hn
ic

ian
 is

 u
na

w
ar

e o
f r

ele
va

nt
 sy

ste
m

 ar
ch

ite
ct

ur
e 

or
 fu

nc
tio

na
lit

y a
t t

he
 re

qu
isi

te
 le

ve
l. 

U
A

-3
K

B
D

Pe
rs

on
al

E
O

rg
an

iza
tio

n

F
O

rg
an

iza
tio

n

T
as

k 
3.

4
C

las
sif

y W
O

 b
y r

ele
va

nt
 

sy
m

pt
om

s/
fe

at
ur

es
M

W
O

 h
as

 fe
at

ur
es

 an
d/

or
 sy

m
pt

om
s c

om
pl

et
ely

 
un

lik
e p

re
vi

ou
s e

xp
er

ien
ce

U
A

-4
K

B
D

Pe
rs

on
al

G
T

ec
hn

ol
og

ic
al

Se
lec

te
d 

M
W

O
 fe

at
ur

es
 ar

e n
ot

 re
lev

an
t a

nd
/o

r 
M

W
O

 ty
pe

 is
 in

co
rr

ec
tly

 id
en

tif
ied

U
A

-5
R

B
H

O
rg

an
iza

tio
n

I
Pe

rs
on

al

G
T

ec
hn

ol
og

ic
al

T
as

k 
5:

 O
rg

an
ize

 sy
m

pt
om

s i
nt

o 
D

B 
Sc

he
m

a, 
fo

r f
ut

ur
e u

se

T
as

k 
5.

2:
 C

at
eg

or
ize

 k
no

w
led

ge
 in

to
 co

nt
ro

lle
d 

vo
ca

bu
lar

y

T
as

k 
5.

2.
1

T
ra

ns
lat

e s
ym

tp
om

 fe
at

ur
es

T
ec

hn
ic

ian
 is

 u
na

w
ar

e o
f r

ele
va

nt
 sy

ste
m

 ar
ch

ite
ct

ur
e 

or
 fu

nc
tio

na
lit

y a
t t

he
 re

qu
isi

te
 le

ve
l. 

U
A

-3
K

B
D

Pe
rs

on
al

E
O

rg
an

iza
tio

n

F
O

rg
an

iza
tio

n

T
ec

hn
ic

ian
 m

isu
nd

er
sta

nd
s t

ar
ge

t u
se

-c
as

e a
nd

 
fu

nc
tio

na
lit

y o
f a

 co
nt

ro
lle

d-
vo

ca
bu

lar
y C

M
M

S

U
A

-6
K

B
J

Pe
rs

on
al

K
So

ci
al

T
as

k 
5.

2.
2

C
at

eg
or

ize
 sy

m
tp

om
s i

nt
o 

D
B 

sc
he

m
a

D
B 

sc
he

m
a d

oe
s n

ot
 co

nt
ain

 ap
pr

op
ria

te
 p

ro
bl

em
 

co
de

 to
 re

pr
es

en
t t

he
 M

W
O

 fe
at

ur
es

U
A

-7
R

B
G

T
ec

hn
ol

og
ic

al

K
So

ci
al

T
ec

hn
ic

ian
 d

oe
s n

ot
 ap

pl
ya

pp
ro

pr
iat

e p
ro

bl
em

 co
de

 
(u

nf
am

ili
ar

 w
ith

 D
B 

cla
ssi

fic
at

io
n 

sc
he

m
a)

U
A

-8
K

B
F

O
rg

an
iza

tio
n

L
O

rg
an

iza
tio

n

T
as

k 
5.

2.
3

Lo
ca

te
 re

lev
an

t c
at

eg
or

ies
 in

 D
B 

in
te

rf
ac

e
T

ec
hn

ic
ian

 gi
ve

s u
p 

se
ar

ch
in

g p
rio

r t
o 

fin
di

ng
 

ap
pr

op
ria

te
 p

ro
bl

em
-c

od
e. 

U
A

-9
R

B
H

O
rg

an
iza

tio
n

L
O

rg
an

iza
tio

n

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

will modify actual HEPs. Each of these PSFs is broken down
into states, such as Available time being “Adequate”, “Tem-
perately inadequate”, or “Continuously inadequate”. Each of
these states, then, have corresponding weight values depend-
ing on the type of human function determined for the given
sub-task. This weight is to be used in modifying the basic
HEP as found above for each of the sub-tasks in our task.

With all of these in place, the formula for final HEP on a given
sub-task is then

P̂HE = PHE(argmax
i

Fi|Ci)×
∏
i,j

S(Zj(PSFi)) (1)

where we select the most probable failure mode F for a sub-
task, given our corresponding cognitive activity C, and mod-
ify that probability by the product of scores S for each of the
selected PSFi, and for each of the states Zj that PSF can oc-
cupy. The above sub-task HEP’s can now be combined into
a total HEP for the entire task, and specific areas can be ad-
dressed (by importance) for risk mitigation (see Section 6.1).

5.2. Possible Modifications to CREAM

Despite the overall applicability of CREAM to this HRA, sev-
eral of the PSFs identified in Section 4 are not distinguished
sufficiently by the generic PSFs provided in CREAM. These
will rather be created, to augment the original list provided in
CREAM, through a combination of data collection and statis-
tical methods (outlined below in Section 5.3). Once new data
is collected, modification values should be derived through
feature-importance methods, potentially a weighted hierar-
chical Bayesian regression or other probabilistic model, to es-
timate the modifier values and uncertainties empirically. Cal-
culation of the final HEP will then proceed as originally in-
tended, including the new PSF values as derived relative to
the original set.

5.3. Instantiating CREAM

As noticed in the previous section, CREAM was selected to
maximize the amount of applicable generic tasks, based on a
mapping between Bloom’s taxonomy (as used to construct
our CTA) and the list of Cognitive Activities outlined by
Hollnagel, 1998. Additionally, several PSFs are well covered
by the generic Common Performance Conditions (CPC’s) he
provided as well. Both sets of available data serve as a way
to quickly approximate these portions of this HRA, without
significant data collection, and as a way to encourage repro-
duceability, for which CREAM is notable (see the NASA re-
port on CREAM (Chandler et al., 2006)).

However, 6 of the PSFs we defined contain context-specific
information, with levels of important detail that the CREAM
CPC defaults would approximate with too broad a brush.
Three of these could be addressed through statistical anal-
ysis of existing MWO datasets—due to their importance in

Table 4. Potential HRA supporting data types and sources

Data Source Variable Data Type
Available T 3.1 Verify
(CA) T 3.2 Identify

T 3.4 Record
T 5.2.1 Plan
T 5.2.2 Execute
T 5.2.3 Scan

Possible PSF A Crew Collaboration
(CPC) PSF E Procedure Availability

PSF F Training & Preparation
PSF H Available Time
PSF K Adequacy of Organization
PSF L MMI & Operational Support

Expert PSF B Technician Survey
Elicitation PSF I Management Survey

PSF J Management Survey
Empirical PSF C MWO statistical analysis
Derivation PSF D MWO variety metric

PSF G MWO recurrence metric

key sub-task locations and their ability to be approximated
post-priori—and the final three could be elicited from a mix-
ture of management and technician surveys. In addition, PSF
weights must be assessed in-situ, to account for their relative
importance and context sensitivity. In general, beyond pre-
liminary guidance at PSF-to-CPC mapping, we do not pro-
ceed beyond determining BHEPs, and encourage the reader
to use this work as a framework “stepping stone” toward a
more complete, contextual HRA.

To maximally exploit the available data in CREAM, we
briefly describe the mapping between our tasks and the
CREAM Cognitive Activities (CA), through ensuring the
possible types of human errors in a CA roughly correspond
to identified UAs in each task.

• 3.1 Recall→ Verify: the low-level “recall” from Bloom’s
is not present in CREAM; however, the recall of features
is a form of confirmation of state, based on prior oper-
ation, and the available O3 (Observation not made) and
I3 (Delayed Interpretation) errors map well to UA-1 and
UA-2, respectively.

• 3.2 Identify→ Identify: Mapping is preserved. Error I1
(Faulty diagnosis) covers UA-3.

• 3.4 Classify→ Record: The act of classification here is
tantamount to immediate preparation for writing down
verbatim whatever diagnostic features a technician has
mentally developed. Note a lack of need to enter the cate-
gorization/translation loop. Execution and Interpretation
errors—E5 (Miss Action) and I1 (Faulty Diagnosis), for
example–could cover UA-4 and UA-5.

• 5.2.1 Translate → Plan: The act of translation into a
CMMS system requires a technician to formulate a set of
actions to achieve conformity. P1 (Priority error) would

9
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be indicative of a UA-3, and misunderstanding CMMS
functionality (UA-6) would certainly lead to P2 (Indade-
quate plan).

• 5.2.2 Categorize → Execute: Categorization is the final
act of the technician in our HRA; he executes the trans-
lation plan while scanning for valid matches. E3 (Action
on wrong object) covers UA-8, while E5 (Miss Action)
could be used as a proxy for UA-7.

• 5.2.3 Locate → Scan: Mapping is preserved. Error O3
(Observation not made) covers UA-9.

BHEPs can then be determined directly, using Hollnagel,
1998’s estimates (See Table 5). In mapping a portion of
our PSFs into the generic CREAM CPC’s, we limit these
equivalences to only those cases where a single PSF is suf-
ficiently covered by a single CPC in an obvious way. These
mappings can be found in Table 4. These are only possibil-
ities, and must still be scored and combined with the other
context-specific PSFs to create a complete HRA. We leave
a discussion of expert-derived or data-driven estimation for
these PSFs to potential future case studies.

6. DISCUSSION

Upon construction and execution of the HRA method, an ana-
lyst may recommend strategies for risk mitigation, along with
understanding any implications that performing this HRA
might imply. We attempt to foresee several major areas that
such a study might address.

6.1. Risk Mitigation

The final step in a fully realized HRA would be to calculate
context-specific PSF values, which can directly provide the
HEP via Equation 1. As such, they cannot be provided here,
and require additional data collection and user study as out-
lined in Table 4. Still, the BHEP values as determined by
applying CREAM to our CTA can provide valuable insight
into possible categories of failure modes and risk mitigation
strategies to be aware of, going forward.

Based on the CREAM function-activity mappings, which
were arrived at through systematic mapping to our unsafe
acts via Section 5.3 and summarized in Table 5, two main
risk ”areas” dominate the BHEP values. Interpretation er-
rors (mostly I1: Faulty Diagnosis) leading up to the act of
data-entry (related to a technician’s understanding of the as-
set/system, UA-3), and Planning/Execution during the data-
entry categorization loop (P2, E5, related to UA-6 and UA-
7). Though the table outlines a more complete breakdown by
individual sub-task, these failure modes will likely take miti-
gation priority moving forward.

In the spirit of avoiding personal blame during error mitiga-
tion in favor of systemic change (Reason, 1990), strategies
must be designed and executed with full understanding of

each organizational context. The suggested risk mitigation
strategies in Table 5, then, should be viewed merely as start-
ing points in a more holistic apporach, guided by the frame-
work we provided above. In the interest of guidance for the
readuer, we have categorized the suggested mitigation strate-
gies into four archtypes — Control (legistlation, standards,
etc.), Educate, Design (system/interface, engineering princi-
pals, etc.), and Persuade.

The approaches outlined in Table 5 generally fall into two
categories: 1) modify technician behavior through education
and environment adjustments to reduce errors in diagnosis,
and 2) design a data-entry framework that minimizes execu-
tion and planning error through cognitive analysis and good
HMI principles.

Training and diagnostics First, as diagnostics is the primary
job of a maintenance technician, and the cost of error is al-
ready known to be high, it is unlikely that the mitigation
strategies presented here will significantly impact whatever
mitigation is already in place through a maintenance depart-
ment. The scope of this HRA necessarily includes the diag-
nostic capabilities of a technician as a prior to MWO data en-
try, but actual alteration of the course of normal maintenance
duties is outside the scope of feasible mitigation. As such,
we outline only relatively low-cost strategies that are indus-
try best-practice already. Examples given are: formalization
of asset/system architectures for easy reference and guidance,
institution of a buddy-system for new hires or assessment
of new asset types, and institutional requirement of periodic
data-entry times to reduce stress from time constraints. In
short, any risk met here should necessarily be addressed by
the maintenance team in the course of their duties, regardless
of a data-entry component.

HMI and data-entry design This point in the decision pro-
cess is much closer to the original intent of this HRA. Risks
are primarily found in the disconnect between the needs of
a structured database (its abstraction level, ability to query
past events, modeling of asset/system architecture, etc.) and
the needs of a technician (pressure to be thorough vs timely,
use of efficient jargon, reliance on tacit knowledge through
expertise). These can be mitigated, at relatively low cost, de-
pending on the level of existing data entry adoption.

Already using controlled vocabulary — If an organization
is already tied to a particular DB architecture, it is possi-
ble to illicit technician feedback on pain points through cur-
rent usage patterns to either better communicate the level of
detail needed for future operational usage of the database
(low-cost), or design a more functional and user-driven in-
terface through HMI principals (medium-high cost), or—
preferrably—both. Failure to do so will likely result in un-
wanted data-entry behavior indefinitely, as a feeling of resent-
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Table 5. Risk Mitigation Strategies, by Unsafe Act

Task UA→CA BHEP Risk Mitigation

T 3.1 UA-1→O3 3E−3 Persuade - promote positive interaction of operator and tecnhician
UA-2→I3 1E−2 Control/Design - designate time as set aside for data-entry throughout the day

T 3.2 UA-3→I1 2E−1 Educate - provide high and low-level system architecture as reference material at
diagnosis-time

T 3.4 UA-4→E5 3E−2 Educate/Control - institute ”buddy” system for newly aquired assets and new hires
UA-5→I1 2E−1 Persuade - motivate technicians to expound upon diagnostic decisions in MWO, and add

more relevant details when unsure.
T 5.2.1 UA-3→I1 2E−1 Educate - provide high and low-level system architecture as reference material at

diagnosis-time
UA-6→P2 1E−2 Design/Educate - make use of interface that obviates correct usage and learning curve

through HMI design principles.
T 5.2.2 UA-7→E5 3E−2 Design - only require specific, controlled data-entry at the necessary abstraction level

UA-8→E3 5E−4 Design - incorporate feedback from technicians on interface design
Educate/Control - institute ”buddy system” for newly aquired assets and new
hires.

T 5.2.3 UA-9→O3 3E−3 Design/Persuade - ensure data-entry attitude toward thouroughness matches the requisite
abstraction and detail level of DB

ment could build between data-management personnel and
shop-floor technicians (due to perpendicular goals).

Implementation of new system — preliminary research indi-
cates that the usage of a more user-driven data-structuring ap-
proach could arrive at a desired level of abstraction naturally,
through use of tags, for example (Sexton et al., 2017; Sinha,
2005). This also implies the direct usage of existing techni-
cian shorthand, via data-driven vocabulary mappings. Such
a system is low-cost, but may require significant re-training
of multiple parties in using such a new paradigm. Further
research is needed; however, there is potential to completely
mitigate the otherwise unavoidable risk associated with enter-
ing the categorization loop in Task 5.2

6.2. Implications for HRA adoption

The proposed HRA method has been developed to minimize
the data collection and computational work-load required for
estimation of HEP for two major tasks in MWO data-entry.
Stakeholders, such as SME manufacturers and other indus-
trial maintenance operations, or operations researchers, have
influenced its development through feedback on major prob-
lems encountered when attempting to utilize existing MWO
data. As such, if synthesis of these HRA results continue to be
broken down into guidelines that are dependent on the current
stage of data-entry implementation, acceptance is potentially
straightforward across many organizational scales, by design.

It is, however, necessary that the cultural interest of an orga-
nization be aligned with the implementation of more data-
driven “smart manufacturing” methodologies. It would be

potentially beneficial to assess the maturity of an organiza-
tion for implementing such technologies prior to undertak-
ing or utilizing results from the HRA method proposed here,
and several tools already exist or are in development to do
so (De Carolis et al., 2017).

6.3. Limitations

It is important to keep several limitations of the methodology
proposed here in mind, moving forward. First are limitations
surrounding CREAM itself; despite being a 2nd generation
HRA method—being more grounded in underlying human
cognition than previous schemes—it has not been designed
for this domain, nor validated formally in it. This can be
seen in the lack of specificity in several mappings between
our UAs and the CREAM Cognitive Activity/Human Func-
tion pairings. These mappings will need to be validated nu-
merically as useful, before they should significantly impact
policy of any kind. The same is true for the base-values for
HEP given, which were not only designed for a different do-
main, but were originally a mixture of values from previous
HRA methods and elicitation from experts (Chandler et al.,
2006).

Another key limitation is in the ability for useful PSF val-
ues to be estimated from existing MWO datasets, which are
a very common existing data-type for maintenance opera-
tions. The size of these datasets, and their structuring quality,
is severely lacking for highly-dimensional statistical models
necessary—thus the existence of this HRA in the first place.
It is not yet known if results across organizations and do-
mains (which will be needed to obtain sufficient data) will
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be compatible, nor to what degree the subjectivity differences
between management and technician surveys will affect PSF
values. This must be kept as a high-priority discussion point
in any implementation of this HRA.

7. CONCLUSION

We have proposed a HRA for the quantification and potential
mitigation of human error in MWO data entry through cate-
gorization, with the goal of increasing the reliability of these
human-machine systems. This is done by assessing the com-
ponents of a proposed two-part process humans use to struc-
ture data: determine distinguishing features of a given data-
point, and organize those features into the database schema
for future queries. Using principals of cognition, behavior,
and risk assessment, it is hoped that the sources of risk in
each can be mitigated at low-cost through implementing ed-
ucation, design, and socially-driven strategies, along with a
re-thinking of the current MWO paradigms to incorporate
human-in-the-loop data-driven pipelines that take advantage
of technicians’ expertise, rather than antagonize it.

Future extensions of this HRA should perform similar analy-
ses for the other two identified forms of data-entry, followed
by a decision guidance study that weighs the calculated risks
of each data-entry system with the costs associated in their
usage. Preliminary research indicates potential usefulness
of hybridized data-structuring systems that could more effi-
ciently balance these two driving forces.

DISCLAIMER

The use of any products described in this paper does not im-
ply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that products
are necessarily the best available for the purpose.
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