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ABSTRACT 

Localized tooth crack in gearboxes may be reflected in 

impulse components of gearbox vibration signals. Crack 

induced impulses have been used for crack detection and fault 

diagnosis. In reported studies, researchers have used 

statistical indicators of the identified impulses, such as root 

mean square (RMS) and kurtosis, to track the growth of crack. 

These reported statistical indicators are only effective when 

crack levels are high and they are unable to detect tooth crack 

and assess crack severity in the early stage of crack 

propagation. In addition, no reported studies have focused on 

studying how tooth crack level affects crack induced 

impulses. Specifically, what the dominant segments of crack 

induced impulses are and which segment is affected most by 

crack growth within a certain crack level range. This paper 

uses dynamic modeling to study how crack level affects crack 

induced impulses. First, impulses are generated with a spur 

gearbox dynamic model under constant working conditions. 

Second, an exponentially damped sinusoidal model is utilized 

to fit the impulses and the Matrix Pencil Method is used for 

model parameter estimation. Finally, relationships between 

crack level and impulses are studied based on the obtained 

model parameters. The results have shown that the segments 

in the fifth and the sixth frequency bands of impulses are two 

dominant segments, while other segments have little 

contribution, for the gearbox system under investigation. 

Within a certain crack level range, there exists an impulse 

segment which is most affected by the crack level. In terms 

of the early stage of crack propagation, the segment in the 

sixth frequency band of the impulse is most affected by crack 

growth. On this basis, three new statistical indicators have 

been developed with the segment in sixth frequency band of 

the impulse and have shown their effectiveness for tooth 

crack severity level assessment in the early stage of crack 

propagation. These results have good potential for detection 

and severity assessment of early tooth cracks in gearboxes. 

1. INTRODUCTION 

Gearboxes are widely used in industrial applications, such as 

wind turbines and railway vehicles. Due to harsh working 

environments, gearboxes are easily suffering from various 

faults, such as tooth crack, tooth breakage, pitting and 

spalling. Once faults occur, it may cause great damage to the 

whole system, even leading to catastrophic accidents. Tooth 

crack accounts for a large proportion of gearbox faults. 

Therefore, research on tooth crack detection and diagnosis 

has attracted lots of attention during the past decades, 

especially in the early stage of tooth crack propagation. 

For healthy gearboxes, their vibration signals are mainly 

composed of the fundamental gear meshing frequency and its 

harmonics (Randall, 1982). But when there is a localized gear 

tooth crack, vibration signals will be affected since impulses 

with short time duration are introduced. It’s believed that the 

short duration impulse is induced by the localized tooth crack 

(Wang, 2001). Crack induced impulses in vibration signals of 

faulty gearboxes could be extracted and used to detect the 

existence of tooth crack and assess crack severity (Wang & 

Wong, 2002), (Tian, Zuo, & Wu, 2012). 

There are two groups of vibration-based methods for tooth 

crack detection and diagnosis. The first group is based on 

gearbox vibration data collected from experimental tests or 

field applications while the second one relies on the simulated 

vibration responses obtained with gearbox dynamic models. 

Compared with real vibration data based methods, simulated 

vibration response based methods have two advantages (Tian 

et al., 2012): (1) There is no environmental noise in gearbox 

vibration responses, which helps researchers to only focus on 

analyzing crack induced impulses and develop effective tooth 

crack diagnosis methods; (2) It’s easy to simulate various 

tooth crack severity levels with well-developed dynamic 

models, which is helpful to study relationships between crack 

level and vibration signals. Therefore, methods based on 
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simulated vibration responses become more and more 

popular for tooth crack diagnosis. 

For simulated vibration response based methods, vibration 

responses obtained with gearbox dynamic models are 

processed to conduct tooth crack detection and diagnosis. A 

new residual signal generation method by subtracting the 

entire vibration response of healthy gear from that of the 

faulty gear was presented in (Wu, Zuo, & Parey, 2008). The 

obtained residual signals can be seen as crack induced 

impulses in this situation. The root mean square of the 

impulse (RMSI) and the kurtosis of the impulse (KURI) 

became more sensitive to crack growth than those obtained 

with the original vibration response. But RMSI and KURI was 

ineffective for early crack detection since their increase was 

pretty small in the early stage of crack propagation, i.e., they 

are insensitive to early crack level. A new indicator, root 

mean square of the segment of crack induced impulse in the 

first three tooth meshing cycles (RMSI3), was developed 

(Tian et al., 2012). They showed that RMSI3 was more 

sensitive for reflecting crack growth than RMSI and KURI. 

But the increasing rate of RMSI3 still remains relatively low 

in the early crack stage, which means it is not effective for 

assessing tooth crack level. Recently, a method for gear tooth 

crack diagnosis based on modelling the crack induced 

impulse with Laplace wavelet and maximum correlation 

coefficient has been reported (Wang & Shao, 2017). They 

tried to describe the mode of crack induced impulse with a 

parametric-Laplace wavelet technique and determine the 

most suitable wavelet base function with the maximum 

correlation coefficient criterion. The correlation coefficient 

between the optimal Laplace wavelet base function and the 

impulse was designed as a health condition indicator for 

crack diagnosis. The results showed that the indicator 

increases as crack propagates. But there are some drawbacks: 

(1) it assumed that there exists only one mode in the impulse, 

which may be improper since it may contain several modes; 

(2) the developed indicator has very slight increase in the 

early stage of crack propagation and cannot show obvious 

increase even in large crack levels; (3) no attempt was made 

to analyze how crack induced impulses change as tooth crack 

gets severer. Therefore, further studies should be conducted 

to investigate how crack level affects crack induced impulses. 

If the dominant impulse segments and the segment most 

affected by crack level in the early crack stage could be 

known, then statistical indicators developed with this specific 

impulse segment are expected to have good performance for 

crack severity assessment in the early stage of crack 

propagation.   

In this paper, based on a dynamic model of one-stage fixed-

axis spur gearbox with local tooth crack under constant 

working condition, crack induced impulses are generated. 

They are modelled with exponentially damped sinusoids and 

model parameters are estimated with the Matrix Pencil 

Method. By processing model parameter estimates, the most 

dominant impulse segment and the segment more affected by 

crack level in certain crack level ranges are studied. Three 

new indicators are developed for tooth crack severity 

assessment in the early stage of crack propagation. 

The remainder of this paper is organized as follows. In 

Section 2, the overall method for analyzing the crack induced 

impulse is illustrated with a developed procedure. The 

generation of crack induced impulses of various crack levels 

is shown in Section 3. Section 4 introduces the exponentially 

damped sinusoidal model and the Matrix Pencil Method. 

Section 5 presents the results and discussions. Finally, 

conclusions are drawn in Section 6. 

2. OVERALL METHOD 

The overall method shown in Figure 1 is developed to find 

out the most dominant impulse segment and the segment 

more affected by crack level in early crack stage. And then 

the specific segment is adopted to develop new health 

indicators for early tooth crack severity level assessment. 

 

Figure 1. The procedure of the overall method. 

From Figure 1, it’s seen that there are nine main steps and 

three additional steps. These 12 steps could be divided in to 

several separate parts listed below. 

(1) Crack induced impulse generation. This part contains Step 

1 and Step 2. Crack induced impulses of all the considered 

crack levels are obtained; 
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(2) Crack induced impulse fitting. Step 3 and Step 4 are 

included. For crack induced impulse of a specific crack level, 

it’s fitted with exponentially damped sinusoidal model and 

model parameters are estimated with Matrix Pencil Method; 

(3) Frequency range division. The Steps I, II, and III are 

placed in this part. Here, the frequency range to be considered 

and division of frequency range are determined; 

(4) Post-processing of model parameter estimates. This part 

includes Steps 5, 6, and 7. The post-processing of model 

parameter estimates are conducted; 

(5) The most dominant segment in a certain crack level range. 

This part contains Step 8. Repeat steps from Step 2 to Step 7, 

the most dominant segment and the segment more affected 

by crack level are expected to be known; 

(6) Development of new health condition indicators. This part 

includes Step 9. New indicators are developed for early crack 

severity level assessment. 

3. THE GENERATION OF CRACK INDUCED IMPULSE 

In this section, how to generate the crack induced impulse 

with gearbox dynamic model is summarized. 

3.1. The Cracked Gear Tooth Model 

A gear tooth crack usually initiates at the tooth root fillet. 

Tooth crack will propagate in certain paths. In this paper, 

crack propagation path has been simplified as a straight line 

starting from tooth root fillet. The simplified cracked tooth 

model with maximum crack depth is shown in Figure 2. 

 

Figure 2. The cracked tooth model (Tian et al., 2012). 

In Figure 2, 𝑞1 is the maximum crack depth from the initial 

point of crack propagation to the central line of gear tooth, 𝑞2 

is the actual maximum crack depth in the symmetric 

direction. For the gearbox dynamic model in (Tian et al., 

2012), 𝑞1 = 3.9 mm and 𝑞2 = 2.34 mm. The percentage of 

a crack depth to the theoretical maximum depth is defined as 

the crack level (cl), which is calculated with Eq. (1). 

𝑐𝑙 =
𝑞

(2 × 𝑞1)⁄ × 100%                         (1) 

where 𝑞 is the considered crack depth varying from 0 mm to 

6.24 mm with the increment of ∆𝑞 = 0.1 mm.  

Based on Eq. (1), the crack level corresponds to an arbitrary 

crack depth could be calculated. When 𝑞 = 0 mm, it’s the 

healthy gear case, 𝑐𝑙 = 0%. For the minimum crack depth 

𝑞 = 0.1 mm, 𝑐𝑙 = 1.29 %. When 𝑞 = 6.24 mm, i.e., actual 

maximum crack depth, 𝑐𝑙 = 80%. In this paper, the crack 

level range (CLR) to be considered is 𝐶𝐿𝑅 = [1.29%, 80%]. 

3.2. The Gearbox Dynamic Model 

The one-stage fixed-axis spur gearbox dynamic model is 

shown in Figure 3, which is adopted from (Tian et al., 2012).  

 

Figure 3. The gearbox dynamic model (Tian et al., 2012). 

This model represents a gearbox system with eight degrees of 

freedom. The cracked tooth is with the pinion 𝑚1 in Figure 

3, and its motion in y direction is studied. The number of 

pinion teeth is 𝑁𝑝 = 19, pinion shaft rotating frequency is 

𝑓𝑠 = 30 Hz. The gear mesh frequency is 𝑓𝑚𝑒𝑠ℎ = 𝑁𝑝 × 𝑓𝑠 =

570 Hz and pinion rotating period is 𝑇𝑝 = 1
𝑓𝑠

⁄ = 0.0333 s. 
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3.3. The Crack Induced Impulse 

Based on the gearbox dynamic model, vibration responses of 

all crack levels are obtained. Then crack induced impulses are 

extracted using the method in (Wu et al., 2008). For example, 

the impulse of 80% crack level is obtained by subtracting the 

vibration response of the healthy gear (𝑐𝑙 = 0%) from that of 

the faulty gear (𝑐𝑙 = 80%). It is periodic and its amplitude is 

extremely small, and thus its amplitude is amplified by 

multiplying a factor 108 . The time-domain waveform and 

frequency spectrum of the amplified impulse are shown in 

Figure 4. Besides, it’s truncated to have only one period (𝑇𝑝) 

to reduce computational complexity. The obtained impulse in 

one period is shown in Figure 5. 

 

Figure 4. Time-domain waveform and spectrum of the 

impulse with 𝑐𝑙 = 80%. 

  

Figure 5. The impulse waveform in one period (𝑐𝑙 = 80%). 

From Figure 4, it’s obvious that there are several resonant 

peaks in the frequency spectrum of the crack induced 

impulse. These resonant peaks are excited by the localized 

tooth crack and each resonant peak corresponds to a specific 

natural frequency of the gearbox system. Similar resonant 

peaks in the frequency spectrum of the crack induced impulse 

could also be found in the reported study (Li et al., 2016). But 

in terms of the experimental or filed vibration data of cracked 

gearboxes, due to the strong environmental noise and the 

effects of vibration transfer path and sensor bracket, it’s hard 

to observe dominant and obvious resonant peaks in the 

frequency spectrums.  

From Figure 4, it’s also seen that spikes with 𝑓 > 5700 Hz 

have very small magnitudes, which means spikes beyond 

5700 Hz have little contribution to the impulses and can be 

negligible. It can hold for impulses of all the other crack 

levels. So the frequency range to be considered is 
[0 Hz, 5700 Hz]. It is divided into several frequency bands 

(FBs). The upper bound, center, and lower bound of the  𝑖𝑡ℎ 

FB, i.e. 𝐹𝐵𝑖 , are (𝑖 + 0.5) × 𝑓𝑚𝑒𝑠ℎ , 𝑖 × 𝑓𝑚𝑒𝑠ℎ , and (𝑖 −
0.5) × 𝑓𝑚𝑒𝑠ℎ, respectively. Here 𝑖 is the number of FB and 

𝑖 = 0, 1, … , 10. The spread of each FB equals 𝑓𝑚𝑒𝑠ℎ, except 

the first one and the last one since they only have a spread of 

half 𝑓𝑚𝑒𝑠ℎ. The division results are tabulated in in Table 1. 

Table 1. Eleven frequency bands of the frequency range. 

FB0 FB1 FB2 FB3 FB4 FB5 

[0, 

285] 

[285, 

855] 

[855, 

1425] 

[1425, 

1995] 

[1995, 

2565] 

[2565, 

3135] 

FB6 FB7 FB8 FB9 FB10  

[3135, 

3705] 

[3705, 

4275] 

[4275, 

4845] 

[4845, 

5415] 

[5415, 

5700] 

 

4. CRACK INDUCED IMPULSE MODELLING 

In this section, how to model cracked induced impulses and 

estimate model parameters is introduced. 

4.1. Exponentially Damped Sinusoidal Model 

Some reported studies claimed that the vibration signal of a 

cracked spur gear has a transient nature and could be 

modelled using impulse responses (Antoni & Randall, 2006). 

For a single degree of freedom vibration system considering 

the effect of damping, its impulse response could be 

represented with an exponentially damped sinusoid. The 

exponentially damped sinusoid could be seen as a modulated 

signal whose carrier frequency and modulation frequency are 

the system undamped natural frequency and the damped 

natural frequency, respectively. For the considered spur 

gearbox system in Figure 3, it’s a system with multiple 

degrees of freedom, so it has multiple natural frequencies. 

When there exists a tooth crack, it will excite multiple natural 

frequencies (Li et al., 2016). So the impulse response could 

be represented using the sum of several exponentially 

damped sinusoids. If only a resonant frequency is considered, 

then the crack induced impulse could be modelled with a 

single exponentially damped sinusoid (Zhao & Jia, 2017). 

There is another way to model the crack induced impulse, 

namely to treat it as a modulated signal whose carrier and 

modulation parts are harmonics and a short-period 

rectangular pulse, respectively (Randall, 1982). But this 
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model is not conformed to the solutions of the vibration 

equations of gearbox system with multiple degrees of 

freedom, and so it’s not adopted to model the cracked induced 

impulse in this paper. 

Besides, the impulse in Figure 5 has almost the same 

waveform pattern as speech signals (Kumaresan & Tufts, 

1982). In the research area of speech signal analysis, transient 

speech signals are always modelled with exponentially 

damped sinusoids (Boyer & Abed-Meraim, 2004).  

Therefore, it’s reasonable and feasible to adopt the 

exponentially damped sinusoidal model in Eq. (2) to 

mathematically represent the crack induced impulses. In Eq. 

(2), the 𝑖𝑡ℎ exponentially damped sinusoid is seen as the 𝑖𝑡ℎ 

component of the crack induced impulse. 

𝑦(t) = ∑ 𝐴𝑖𝑒
(𝐷𝑖𝑡)cos (2𝜋𝑓𝑖𝑡 + 𝜃𝑖)

𝑀
𝑖=1               (2) 

where 𝑀  is the number of the exponentially damped 

sinusoids; 𝐴𝑖  is the amplitude, 𝐷𝑖  the damping factor, 𝑓𝑖  the 

frequency, and 𝜃𝑖  the initial phase of the 𝑖𝑡ℎ  exponentially 

damped sinusoid, respectively. 

Please note this model needs to be modified to represent the 

measured cracked gearbox impulse signals if the effects of 

vibration transfer path and sensor bracket are considered. 

4.2. The Matrix Pencil Method 

The problem of estimating model parameters is equivalent to 

solving the nonlinear least-squares problem in Eq. (3). 

�̂� = arg min
𝑝

‖𝑦 − ∑ 𝐴𝑖𝑒
(𝐷𝑖𝑡)cos (2𝜋𝑓𝑖𝑡 + 𝜃𝑖)

𝑀
𝑖=1 ‖

2
    (3) 

where 𝑝 = (𝑀, 𝐴1, 𝑓1, 𝜃1, 𝐷1, … , 𝐴𝑀, 𝑓𝑀, 𝜃𝑀, 𝐷𝑀  )  is the 

unknown model parameter vector to be estimated. 

To solve the nonlinear least-squares problem in Eq. (3), either 

nonlinear methods or linear methods could work. For 

nonlinear method, the Hankel Total Least Square (HTLS) 

method (Lemmerling & Van Huffel, 2001) works. For linear 

methods, the Prony’s method  (Potts & Tasche, 2010), Linear 

Prediction Singular Value Decomposition (LPSVD) (Tufts & 

Kumaresan, 1982), and the Matrix Pencil Method (Hua & 

Sarkar, 1990) had shown their effectiveness. The comparison 

results presented in (Liu et al., 2007) concluded that the 

Matrix Pencil Method is most robust to noise and 

computationally efficient among those methods. Therefore, 

the Matrix Pencil Method is employed to conduct model 

determination while the Prony’s method, HTLS, and LPSVD 

are not considered. 

The Matrix Pencil Method could be seen as a combination of 

the linear matrix operation and nonlinear optimization for 

estimating the unknown model parameters in Equation (3) 

(Hua & Sarkar, 1990). Its linear matrix operation is used for 

estimating model order M , frequencies 𝑓𝑖  and damping 

factors 𝐷𝑖 , while the nonlinear optimization step is adopted to 

estimate the amplitudes 𝐴𝑖  and phases 𝜃𝑖 . This special 

property of the Matrix Pencil Method makes it suitable for 

doing a linear model with high computational efficiency and 

estimation accuracy. 

4.3. The Fitting Result 

With model parameter estimates, the impulse can be 

reconstructed. The coefficient of determination (𝑅2) defined 

in Eq. (4) is used to evaluate the fitting accuracy. It’s a 

measure of how well a model can fit the data. Its value falls 

between 0 and 1, the higher the value, the better the model 

approximation accuracy. 

𝑅2 =  1 −
‖𝑦𝑜−𝑦𝑟‖2

‖𝑦𝑜‖2                                 (4) 

where 𝑦𝑜  is the original signal, and 𝑦𝑟  is the reconstructed 

signal. 

Use the impulse with 𝑐𝑙 = 80%  shown in Figure 5 as an 

example. This original impulse is named 𝑦𝑜. Based on model 

parameter estimates, the reconstructed impulse 𝑦𝑟  is 

obtained. The coefficient of determination is 𝑅2 = 0.994 , 

which means the impulse modelling can get a pretty high 

fitting accuracy. The original impulse and the reconstructed 

version are plotted in Figure 6. It’s seen that the reconstructed 

impulse has well agreed with the original one. For impulses 

of other crack levels, they can also be well fitted. 

 

Figure 6. The original impulse and its reconstructed version 

with 𝑐𝑙 = 80% in one period. 

5. RESULTS AND DISCUSSIONS 

For crack induced impulses with crack levels in 𝐶𝐿𝑅 =
[1.29%, 80%], they can be represented with identical model 

structure but with different model parameters. Model 

parameters are closely related with crack level. Therefore, 

how impulses change with crack levels are studied with 

model parameter estimates.    
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5.1. Post-processing of Model Parameter Estimates 

For each crack level, the corresponding crack induced 

impulse could be decomposed into several components with 

the Matrix Pencil Method. Then the sum of the energies of 

components in 𝐹𝐵𝑖  ( 𝑖 = 0, 1, … , 10 ) is calculated and is 

named 𝐸𝐹𝐵𝑖
, and the sum of the components in 𝐹𝐵𝑖  is called 

impulse segment 𝑦𝐹𝐵𝑖
. For conciseness, only energy results 

of impulse with 𝑐𝑙 = 58.06% are illustrated in Figure 7. 

 

Figure 7. Energy in each FB of impulse with 𝑐𝑙 = 58.06%. 

To find out the dominant impulse segments, energy is used 

as the selection criterion. Specifically, impulse segment in a 

specific FB with high energy is considered to be dominant 

and the one with biggest energy is seen as the most dominant 

segment. From Figure 7, it’s seen that 𝐸𝐹𝐵5
 and 𝐸𝐹𝐵6

 are 

much greater than the others. Therefore, impulse segments in 

𝐹𝐵5 and that in 𝐹𝐵6 are considered as two dominant impulse 

segments for 𝑐𝑙 = 58.06%. Here, name these two segments 

𝑦𝐹𝐵5
 and 𝑦𝐹𝐵6

, respectively. 

5.2. Two dominant segments of crack induced impulses 

Following the method in Subsection 5.1, values of 𝐸𝐹𝐵𝑖
 (𝑖 =

0, 1, … , 10) for impulses of all the considered crack levels are 

calculated and compared. It’s found that the observation, 

namely 𝑦𝐹𝐵5
 and 𝑦𝐹𝐵6

 are two dominant impulse segments, 

can still hold for all the crack levels in 𝐶𝐿𝑅 = [1.29%,
80%]. But the most dominant segment can be different in 

different crack level ranges. How 𝐸𝐹𝐵5
, 𝐸𝐹𝐵6

, and the 

logarithm of their quotient, i.e., 𝐿𝑄 = log10(𝐸𝐹𝐵5
/𝐸𝐹𝐵6

) , 

change versus the crack level are plotted in Figure 8.  

From Figure 8, several useful observations are obtained and 

listed below. 

(1) In 𝐶𝐿𝑅1 = [1.29%, 23.23%]  and 𝐶𝐿𝑅2 = [23.23%,
58.06%], 𝐿𝑄 < 0, which means 𝐸𝐹𝐵5

< 𝐸𝐹𝐵6
. It’s concluded 

that in these two ranges, 𝑦𝐹𝐵6
 is the most dominant segment; 

(2) In 𝐶𝐿𝑅1 = [1.29%, 23.23%], 𝐿𝑄 is much smaller which 

indicates the increasing rate of 𝐸𝐹𝐵6
 is much bigger than that 

of 𝐸𝐹𝐵5
, thus meaning segment 𝑦𝐹𝐵6

 is most affected by crack 

level. 𝐶𝐿𝑅1 is seen as the early stage of crack propagation 

(Tian et al., 2012). Therefore, 𝑦𝐹𝐵6
 is most affected by crack 

level in the early crack stage; 

 

Figure 8. The values of 𝐸FB5
, 𝐸FB6

, and 𝐿𝑄 versus crack 

levels (𝐶𝐿𝑅 = [1.29%, 80%]). 

 (3) In 𝐶𝐿𝑅2 = [23.23%, 58.06%] , the value of 𝐿𝑄  is 

bigger than that in 𝐶𝐿𝑅1, but still smaller than 0. This means 

that 𝐸𝐹𝐵5
 is still smaller than 𝐸𝐹𝐵6

, but their increasing rates 

versus crack level are almost the same. This further indicates 

that in 𝐶𝐿𝑅2, 𝑦𝐹𝐵6
 is less affected by the crack level than it’s 

in 𝐶𝐿𝑅1; 

(4) In 𝐶𝐿𝑅3 = [58.06%, 64.52%] , 𝐿𝑄  is increasing and 

finally exceeds 0, which indicates 𝐸𝐹𝐵5
 is gradually 

approaching 𝐸𝐹𝐵6
 and eventually bigger than 𝐸𝐹𝐵6

. This 

means energy of the impulse is gradually transferred from 

segment 𝑦𝐹𝐵6
 to 𝑦𝐹𝐵5

. This is a phenomenon of energy 

transfer from one impulse segment to another; 

(5) In 𝐶𝐿𝑅4 = [64.52%, 80%] , 𝐿𝑄 > 0 , which means 

𝐸𝐹𝐵5
> 𝐸𝐹𝐵6

, indicating that 𝑦𝐹𝐵5
 is the most dominant 

impulse segment. 

5.3. Three new statistical indicators 

Three new statistical indicators are developed with the 

dominant segment most affected by crack level in the early 

stage of crack propagation. Here, this specific impulse 

segment is named 𝑦𝐹𝐵𝑚
 and its related FB is named 𝐹𝐵𝑚 . 

The three new statistical indicators are defined as follows. 

1) 𝑆𝐸𝐹𝐵𝑚
: sum of energies of the components of 𝑦𝐹𝐵𝑚

; 

2) 𝑆𝑅𝑀𝑆𝐹𝐵𝑚
: sum of root mean square values of the 

components of 𝑦𝐹𝐵𝑚
; 

3) 𝑃𝑀𝑆𝐹𝐵𝑚
: peak magnitude of the spikes in 𝐹𝐵𝑚. 

For the reported gearbox system in (Tian et al., 2012), based 

on the observations in Subsection 5.2, it’s found that 𝑦𝐹𝐵6
 is 

the dominant impulse segment most affected by the crack 

level in the early stage of crack propagation. This means 𝑦𝐹𝐵6
 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

7 

will have biggest change as the crack level gets larger. Three 

new statistical indicators are developed with segment 𝑦𝐹𝐵6
 

and are shown in below three equations. It’s expected that 

these three new indicators could have much higher increasing 

rates than those developed with the original impulses or the 

whole vibration signals.  

𝑆𝐸𝐹𝐵𝑚
= ∑ 𝐸𝑖

𝐼
𝑖=1 , (𝑖 = 1, 2, … , 𝐼)                 (5) 

𝑆𝑅𝑀𝑆𝐹𝐵𝑚
= ∑ 𝑅𝑀𝑆𝑖

𝐼
𝑖=1 , (𝑖 = 1, 2, … , 𝐼)             (6) 

𝑃𝑀𝑆𝐹𝐵𝑚
= 𝑚𝑎𝑥 (𝐴𝑖), (𝑖 = 1, 2, … , 𝐼)               (7) 

where 𝐼 is the number of components in 𝐹𝐵6; 𝐸𝑖  and 𝑅𝑀𝑆𝑖 

are energy and root mean square of 𝑖𝑡ℎ component of 𝑦𝐹𝐵6
, 

respectively; 𝐴𝑖 is the magnitude of the 𝑖𝑡ℎ spike in 𝐹𝐵6. 

In order to compare the performance of these three new 

indicators with that of the three reported ones, i.e., RMSI and 

KURI (Wu et al., 2008) and RMSI3 (Tian et al., 2012), their 

values for 22 crack levels in 𝐶𝐿𝑅 = [1.29%, 58.06%] have 

been calculated. For each indicator, 22 values are obtained 

for all the considered crack levels, and they are formed as a 

value vector 𝑉. After that, 𝑉 is normalized with Eq. (8).  

𝑉 = log10 (
𝑉

𝑚𝑖𝑛(𝑉)
)                            (8) 

The normalized value vectors of the six indicators versus 

crack level are plotted in Figure 9. It’s seen that the three 

developed indicators have higher increasing rates with regard 

to the crack level, which means they all outperform the three 

reported ones when tracking crack growth in 𝐶𝐿𝑅 =
[1.29%, 58.06%] . Especially, 𝑆𝐸𝐹𝐵𝑚

 is most sensitive to 

reflect tooth crack growth and can be used to well assess 

crack severity level. 

 

 

 Figure 9. The normalized values of the six statistical 

indicators versus crack levels (𝐶𝐿𝑅 = [1.29%, 58.06%]). 

Besides, for early crack level in 𝐶𝐿𝑅 = [1.29%, 23.23%], 
the three proposed statistical indicators have much better 

performance than the three reported ones, which can be seen 

clearly in the zoomed-in plot shown in Figure 10. To further 

quantify these indicators’ performance for early crack level 

assessment, their sensitivity to crack level is evaluated. The 

sensitivity is evaluated by calculating the increasing rate of 

the indicator magnitude with regard to the crack level. For the 

early crack level range 𝐶𝐿𝑅 = [1.29%, 23.23%] , an 

sensitivity index (SI) is developed to evaluate the sensitivity 

of each indicator which is calculated with Equation (9). The 

higher the sensitivity index value is, the better performance 

the condition indicator has for early crack level assessment. 

𝑆𝐼 =
𝑉𝑒𝑛𝑑−𝑉𝑓𝑖𝑟𝑠𝑡

𝑐𝑙𝑒𝑛𝑑−𝑐𝑙𝑓𝑖𝑟𝑠𝑡
                               (9) 

where 𝑉 is the value vector of each condition indicator, 𝑐𝑙 is 

the crack level in 𝐶𝐿𝑅 = [1.29%, 23.23%]. 

With Equation (9), 𝑆𝐼 values of the six indicators in Figure 

10 are calculated and tabulated in Table 2. From Table 2, it’s 

obvious that the 𝑆𝐼  values of the three new condition 

indicators are much higher than the three reported ones, thus 

meaning they indeed have much better performance than the 

three reported ones. The result is consistent with the 

observation obtained from Figure 10. 

Table 2. SI values of the six indicators. 

𝑆𝐸𝐹𝐵𝑚
 𝑆𝑅𝑀𝑆𝐹𝐵𝑚

 𝑃𝑀𝑆𝐹𝐵𝑚
 RMSI RMSI3 KURI 

10.83 6.37 5.28 2.09 2.58 1.31 

 

 

Figure 10. The normalized values of the six statistical 

indicators versus crack levels (𝐶𝐿𝑅 = [1.29%, 23.23%]). 

6. CONCLUSIONS 

This paper analyzes how crack level affects crack induced 

impulses. Three new effective statistical indicators are 

developed for crack severity level assessment in the early 

stage of crack propagation. The following conclusions are 

drawn. 
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(1) In 𝐶𝐿𝑅 = [1.29%, 80%] , 𝑦𝐹𝐵5
 and 𝑦𝐹𝐵6

 are two 

dominant segments of crack induced impulse; 

(2) In 𝐶𝐿𝑅 = [1.29%, 58.06%], 𝑦𝐹𝐵6
 is the most dominant 

segment. In 𝐶𝐿𝑅 = [1.29%, 23.23%], i.e., the early stage of 

crack propagation, 𝑦𝐹𝐵6
 is most affected by crack level; 

(3) In 𝐶𝐿𝑅 = [58.06%, 64.52%] , impulse energy is 

gradually transferring from 𝑦𝐹𝐵6
 to 𝑦𝐹𝐵5

, which means this 

crack level range is a transition stage. The crack level 

in [1.29%, 58.06%]  is relatively small and the gear is 

relatively healthy, but when the crack level is in [64.52%,
80%], the gear will become severely deteriorated. Therefore, 

in real industrial applications, this observation could be used 

to check which health state a gearbox is in, namely relatively 

healthy or severely deteriorated; 

(4) In 𝐶𝐿𝑅 = [64.52%, 80%], 𝑦𝐹𝐵5
 is the most dominant 

segment; 

(5) The three new indicators, namely 𝑆𝐸𝐹𝐵𝑚
, 𝑆𝑅𝑀𝑆𝐹𝐵𝑚

, and 

𝑃𝑀𝑆𝐹𝐵𝑚
, have very good performance for tooth crack 

detection and severity assessment in the early stage of crack 

propagation, especially 𝑆𝐸𝐹𝐵𝑚
.  

The effectiveness of the three new indicators will be further 

checked with the experimental data or field data of gearboxes 

with localized tooth crack fault. If their effectiveness can still 

hold, then they could be used to conduct early tooth crack 

severity level assessment for gearboxes in the real industrial 

applications, thus improving the gearbox system reliability 

and reducing the operation and maintenance cost. 
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