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ABSTRACT 1. INTRODUCTION

The accurate estimation of the State of Health (SOH) anghe aqvent of lithiurion bateries has changed our lives.

Remaining Useful Life (RUL) has been a subject of keeRrne small, wireless gadgets like the smartphones and wireless
interest due to its impact on safety andnditionbased geyices could have been developed with the advance of
maintenance service number ofapproachesiave been |ithium-ion battery technology. This technologyovidesus
proposedto tackle this problem dsed either on a model 5 preakthroughto overcome matial and temporairhits and

driven or on a datalriven framework. Due to the electro s the key to advance in Electric Vehicles (EV), Robotics and
chemical complexity involved in battery aging, they are ye'Aerospace industries.

to achieve the accuracy required, especially, forweald
applications. This is because of the difficulgjther in ~ As the importance of batteries grows, the battery
identifying the timevarying nature of model parametensd ~Management system (BMS) technology becomes more
in collecting the reatworld training dataset from widely  significant The biggest disadvantage of batteries is thegagin
varying modes of battery usage. A primary cause of battery aging is a change in the electrode
. o and electrolyte in batteries. Solid Electrolyte Interphase (SEI)
In this paper, we propose a method of estimating SOH and formed on the electrode surface due to chemical reactions
RUL simultaneouslyn such a ways tocontribute toitsreat  §yring the operation obatterie/Arorat, White, Carolina, &
worlq applicability.First, notlplng that battery aging causes poyle 1998) The SEI is becoming more unstable and
thetlme. sequence of charging and discharging vqltage a”ﬂcreasing in quantity athe battery chargsanddischargs
current in a cycléo be shortened anttispersedwe definean  repeatedly The growth of SEtesultsin capacity and power
agingindex, referred to here #we time compensat@]htropy fade in batteriegVetter, Nov, Wagner, & Veit, 2005)
for SOH and RULSeconglfor LSTM-based RUL prediction, gecayse of the aging effect which induces degradation of
we optimize the number of SOH input and the RUL payeries and devices, accurate prediction or estimation on the
pred|c_t|on sequences fothe minimum predlcnon eITor  degree of aging in batteries is necessary.
associated with a sequence of cyclékird, we adpt a
progressive framework of LST8kuch that whatever learned In order to manage the battery efficiently, it is necessary to
from the prior predictions are transferred to the subsequegccurately estimate and manage the battery State of Health
prediction, starting withlearned SOH. For experimental (SOH)and Remaining Useful life (RUL). SOH represents the
verification, we train the proposed progressivieSTM maximum discharge capacity to the rated capacity of batteries
network basedn CALCE datasets and apply to various case§Murnane & Ghazel, 2017Bince the maximum discharge
of chargingand discharging cycledVith SOH estimated capadiy is characteristic of battery aging, SOH is used as an
online, we achieve less than 10 cycles of accuracy in RUindicator of degree of ageing. SOH wéw batterywith no
prediction, moving closer teaklworld applicability. degradation is processed in is 100%. When SOH value
reaches 80%, that thetime forthereplacement and can be
regarded as reaching at amcE of Life (EOL). RUL
represents remaining life until the EOL.

It is major research subjeict battery health management

Taejun Balet al. This is an opeaccess article distributed under the te estimate degree of aging ibattery There are many
of the Creative Commonéttribution 3.0 United States License, wh approaches to achieve that goBhese methods could be
permits unrestricted use, distribution, and reproduction in any me . . . .

provided the originahuthor and source are credited. categorized into three ethods, i.e. direct approach, model

based approach and datdven approach
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In the direct approach, there are few methods using measurddtasets from CALCE inthe Maryland university, we
values directly. Theoulomb counting method is a method of demonstrate our progressive networks which use these
estimating SOH through the calculated discharge capacity kindices haing ability to infer the degree of aging.

integrating the discharge currgitg, Moo, Chen, & Hsieh,
2009. The open circuit voltage method is estimating SO
using the relationship between SOH and OCV obtained b
prior experiment. Weng, Suiand Peng(2014) used OCV
model to monitor SOC ar8OH. The direct approach is easy
to implement bubavingdisadvantages of eline estimation.

HSection 2 covers brief introduction to progressive neural
networks. Section 3 describes our method includindithe
Xompensatedentropy index and the progressive LSTM
networks. In section 4, we do experiments for evaluating our
methods are good at accalisping our goal. Section 5 comes
up withaconclusion.

The modelbased approach utilizes filterirsgich akalman

filters or particle filtes. Liu, Yin, Song and Peng(2018) 2. BACKGROUNDS

estimate SOH usingn UnscentedalmanFilter (UKF) with

the health indicator as the operating time corresponding to ﬂferogresswe neural networks are structures that have been

discharge voltage range. The filter methods have been usQEDpOSEd t_o mimic hgmans perfprmlng new tasks based on
to predict RUL. SVRUPF, which combineaSupport Vector past experiences. Existing learning transfer models, such as

Regression (SVR) andn Unscented Particle Filter (UPF), :ra{lsferflearmgr], lilaveltrée ditsha(:\;ﬁntage tr&at it ‘? imptosskibIeT
hasbeen proposed bPeng, Zhang, Yu, & Zhou, 2016)he o transfer such knowledge that they can do various tasks. To

modelbased approach has the advantage of real time |S°|\ée tthetshe shc_)rtt_comlmgs, tgey ?se tl?? I?teral tchonne;:tmnkt?at
estimation, buhigh computational capacity rseededand €ads to the existing learned network 1o learn he network 1o

: , rfar new t usu et al., 2016)t transfers the prior
multiple tasks onamodd. be pe IlIC<)rE1‘|;ov%vI<I;'(ZjE;tr}aeee)gstin%sgﬁzthe existing network to other networks

The datadriven approach uses learning misdevith pre  via this connection. Through such a structure, it is possible to
performed battery measurement data. Several SOlxtract useful features for a new task.

estimation and RUL prediction studies based on NN structure

have beernconducteddue to its excellent ability to learn

features fronthedata. Especially Long Shefterm Memory output, output, ouiputs

(LSTM) is widely usé in aging estimation modéfou, Park $ 3

and Oh (2017) studied various methods of estimating SOH T | |

with LSTM structure. ZhangXiong, He, and Pech2018) rj wi | ‘ w2 ‘ ‘ w3 ‘
proposed the model with LSTM and Monte Carlo simulatior 2 2 3

for RUL prediction and itsuncertainty. This approach is
based orthe data collected by simulation in laboratory, i.e.J Wi | ‘ W2 ‘ ‘
voltage, current and temperature etc. It can lead to inaccur %

results in real environment applications because thes ‘ T T
parameters vary depending othe battery opeating W | ‘ Wz ‘ ‘ wp ‘
environment. 3

We propose@time compensateghtropy indeXrom battery
voltage distribution which has low variation and
Progressive LSTM networker SOH estimation and RUL
prediction.The advantage of our approdstihatit is capable

of estimathg SOHas well agredcting RUL. Many studies
considered these two separately.number of studies to
predict the timing of battery replacement have been carrie
out under the assumption that SOH is known as label data.
However, in a real applicatioBMS need to estimate SOH
and predicting RULwould be made through accurate SOH The figurel shows the progressive neural networks structure.
estimationIn order toperformdifferent tasks with one model, The ability to integrate por knowledge through the structure
we apply the progressiveeural networkéRusl, Rabinowitz,  wherethe output is transferred to other networks on each
Desjardins, SoyerKirkpatrick, Kavukcuoglu, Pascan&  floor of each networkhence,reduce oblivion of existing
Hadsel| 2016) and combinthemwith LSTM for extracting  knowledge. The lateral connection in-RN makes the
features from time-series data. Knowledge for SOH networkcapable of doingarious tasksThe ability b transfer
estimation accumulated in a network is transferred to anoth@&howledge and deal with multask is the reason why we use
network for predictingsequence of SOBccurately. P-NN in this paperFrom the second column network in P
NN, the output of each hidden layer is written as follows:

input

Figurel. Progressive Neural Networks. Dashed lines are
@teral connections for transferring knowledgach column
leamsto deal different tasks.

In this paper, we show a new healtidicator based on
information entropyfor estimating SOH. Using battery
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where'O is information entropyn the @h battery cycleand

l @ is the probability forthe bin® in a histogram of
voltage distribution aldh battery cycle The operating time

of the battery varies depending thre operating environment
and variation of the information entropy may occur.
Information entropy tends to decrease as operating duration
is shortened. To minimize this effect, the entropy is
normalizd by multiplying the normalization term including
the duration.

where’Q is thehidden output of layetin a columnQao is
the weight matrix of layein columnQand™Y ¢ is weight
matrix of lateral connection from a colurf@o a columnQ
"Qw is an activation functiosuch asRelLU function.The
learning procesin P-NN is sequential. When learning the
column™Qwe freeze weights of the columns before coldfn
and update weights of the colurhnd weights of all lateral
connection from columi©to "On all ‘Qless thariQ

The progressive neural network Haeen applied in various

fields, as it has the advantage of reusing previous results and 0 |_ Ro 11 @ I

learning new thingsThe performance oprogressive neural 0

networks is superior tthe Transfer Learning or Deep Neural

Networks as evident fromthe experimend on emotion ) | o .

recognition on learned knowledge in order to distinguish @ 5 0O neo 11 ¢o v

speakers and gender in (Gideon, Khorram, Aldeneh,

Dimitriadis, & Provost, 2017). whereO is the time compensatedntropy indexO is the
discharging (or chargingjuration ofthe@h cycle andwe

3. PROPOSEDMETHOD call this term a time compensated tefm.s a length

Aging phenomenonof batteries is caused by physical coefficientand can be defined aan operating time of the
chemical changes inside the battery and makes the interrgflortest cycle in the datén Eg. (5), wecan compensate
resistance of the battery and the maximum charge capacity 68OPY index irEq. (4)by thedischarging curreradditional
changed (Williard, He, Osterman& Pecht, 2013). Old te.rmo upder t_he condition that discharging curr_ent changed
batteries are characterized by a wider disdmargoltage  Discharging Time CompensatedEntropy Indices and
distribution tharthatnon-aging battey ’. I means changes ChargingTime Compensatefintropy Indicezome fromthe

in the distribution can be used as an indirect indicator ofoltage distribution during dischargingacharging.

battery aging (Lorenzo & Labed, 2005). In this section, the )

time compensateentropy index based dghebattery voltage ~3.2.Progressive LSTM model

distibution and the progressive LSTM networl® infer o progressive LSTM modefP-LSTM) with input vectos

degree ofging is proposed. includingtime compensateentropy index was designed to
] predict battery SOH and RULThe goal of our model is
3.1.Time CompensatedEntropy Index multiple performance capability to accurately estimate the

Entropy in information theory ithe concept thaShanna ~ SOH of the battery in time, predict the future SOH sequence
(1948)proposed to represent the amount of information thathrough the predicted SOH and obtain it to the RUL. The
data has Information entopy means the number of bits Progressive neural networks-fN) is a suitable structre for

required to represent information. The amount of informatior{n€Se objectives. i structure can effectively communicate
increases as the information is chaotic and irregular. knowledge between networks to perform multiple tasks. We

have designed aPSTM based on LSTM that is suitable for
. L extracting features of time series data accorditgebattery
O nire q operatim.

) . i L . Figure 2 describes our models. Our model includes two P
Ea. (@), is a basic equation for obtalglng information entropy.| STM neworks: 1) A network that estimates SGil the
n is the probability thatan event’Qoccurs. Information  cyrrent timedand predict SOH sequences based on predicted
entropy can be used to indicatelisorder,anuncertainty of goy sequences?) A network that predicts future SOH
the systemAs the battery ages, the system is disordered du%quences until life of battes reaches EOL through the
to the transtion in the internal characteristicdnformation predicted SOH sequence at a first network. Both networks are
entropy is used to represehe changes emerged as voltagepased on RSTM architecture.The hidden state in the
distribution A voltage in an operating cycle is represented byojymn is combined with the hidden state of the previous
a histogramEq. @) can be represented as E8), with the  .4;,mns through the lateral connection. taTM, Q is the

histogramwhich has) bins. hidden state ahelayerQn the @h column:
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The second column’A  predicts a SOH sequence as much
MM QO Q "y ¢ [0} as the prdictioncycle& fromthe current cycle# consists
of two LSTM layers and one LSTMncDec TheEncDec
. is responsible for predicting tH@OH sequence of variabl
where Yis ~Weighted matrix in lateral connection from lengths.An input vector of¥ made from# is estimated
column™to "Gand0 is LSTM layer'Gn the’@h column we  SOH sequenc@ is input vector of the column 2 at the cycle

use RelLU function aQw . t and can be written as:

3.2.1.P-LSTM for SOH 6 Y  FERY P

The first RLSTM network consists of a-RN structure with  whereQ is an input sequence length#bf. The outputQ of
three network columns performing diféatt roles. the LSTM layerdin the second column is added to the output

of the LSTM layerain # multiplied with the lateral
connection weightThis result is used as an input to the next
layer via ReLU function. Through this process, knowledge of
# , which estimatesY from the battery measurement data
including thecompensatethdex, is used to predict the future
SOH sequence ith . The outpug is:

The first column A estimates SOH at the current point in
time. Inputs of# is the vector6 including the time
compensatedntropy indiceswhen voltage data at the cycle
0 is given, O ‘00RO is the time compensated
entropy indices. where ‘OO is the dischargingtime
compensatecentropy index at the cycleandd’O is the

chargingtime compensatedntropy index at the cycle To ¢ “YFE RV ©
specify battery’s operation, input vector includes a dis
voltage distribution.For a given data set until the cydle ~ where"Yis predicted SOH at cyckeandd is a length of
input vectord  with sequence lengi® is written as: predictionin # 8
0 0 0 E RO X The third column A  predicts a SOH sequence with

~ - longer timelength than an output 6¢f . Estimated SOH
whereb N 5 is a discharge voltage distribution with sequence frot¥ andé are concatenated and given as input
nwhMo EM® . The input vector passes through vectoré as follows:
the LSTM layer on each floor and is changed to knowledge
for the next columns. After three LSTM layers and a fully 6 Y E RY RYFE RY p T

connected layerSOH at the cycle fY as a final output is
obtained. Accumulated results used as tipeii vector of# .
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whereQ is an input sequence length#f. Structure o#

have same structure with. Outputs from the laye¥in #

and# are transferred t§ via the lateral connection. BOH
sequence with longer time can be predicted based on the
knowledge to estimaté’ from# and to predict future SOH
sequences frot . Predicted SOH sequence with as
length of prediction it can be written as:

¢ “WERY pp

where'Vis predicted SOH i .

3.2.2.P-LSTM for RUL

The second £.STM network's goal is to predict the SOH
sequence from a certain point in time, which we call the
starting point, to the EOLThe second £STM network
consists of a network columé with LSTM layers and
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€52 _35
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LSTM estimator# predicts a SOHeqjuence whose length Figure3. Degeneration curves the vicinity of EOLfrom

isa from input vector withQ of lengthrepeatedly# has
the input vectort which concatenateé and estimated
SOH values fron# . After predicted SOH sequences are

CS2 dataseEOL is the point where curve reaches at 80%

of rated capacity (dashéabrizontalline).

larger thariQ, 0 comes from results éf only. The maximum capacity of the battery is lower as the battery

For example, EOL is 510 cycle when the starting point isoperates repeatedi£OL is where the degeration curve

o i 9 ity i

300h cycle,a is 40 andQ is 100, the predicting process in r_eaches at a grey dashed_ line of 80/0 of ra_ted capacity in
. S . . figure 3 The raw degeneration curveaisignal with frequent

# from starting point is written as:

change in short period. However, this variation can interfere

~

5 Y FEERY © Y FERY with estimation of SOH and RUL for test data. Therefore, a

I'r < FERY 0 Y FEFRY gaussian filter defined in-D is applied to raw degeneration
.o . curves Filtered signad areused as label data in trainidgta

cr Y Ry 0 %y hY P S for RUL prediction.

I'p é

Y FEERY © Y FERY FERY 4.2.Model Configuration

where"Y is predicted SOH fron# . Some experiments are We conducted experiments to evaluate our methddrms

conducted to determine model parameters like sequen&d efficientestimatonand predidbn ofthe battery SOH. The
lengths and output lengths. training dataset includes CS2_33, CS2_34, CS2_35, CS2_37.

CS2_38 and CS2_36 are used as the validation dataset and
the testing dataset, respectively. Training procedure is as
follows:

4. EXPERIMENTS AND RESULTS

4.1.Datasets 1.

Experiments tevaluate the performance of proposed model
used data frorthebattery aging experiments provided by the
CALCE Battery Research group at the University of
Maryland (He, Williard, Osterman, & Pecht, 2011The
dataset was created by repeatedly chargingdistharging

the battery over several months. The battery named CS2 used
in the experiment is a lithiusion battery with 1.1Ah of rated 2.
capacity. We use é&perimental datasets conducted with CS2,
i,e. CS2_33, CS2_34, CS2_35, CS2_36, CS2 &
CS2_38 Thes cases are divided into two types based on
discharge current. CS2_33 and CS2_34 cycled at constant
discharge current of 0.5C while others cycled at constanj
discharge current of 1C. Figushows the degeneration
curves of test cases.

Design the LSTM model with thespecified parameters.
The input vector is composed of the calculatiede
compensated entropy index, current and voltage
distribution. At this time, the bin number of the voltage
distribution is smaller thathe size used in calculating
the entropy indexn orderto prevent dimension of the
input vector from becoming too large.

Train RLSTM for SOH. First# , which estimates SOH
as an input vector, is learned. Secadhdis trained by
inputting the result of . The weight of# freezes while
learning training# 8At last train# in freeze state of
weights of# and# .

Train RLSTM for RUL. Capacity data which is label
data for training LSTM for SOH used as training data
in this step.
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Figure 4. The average of errors on each prediction points are described in the first row. The distributions of err
and (f) widenaccording to increasing of prediction length. Optisediuence length is 80, which shows good
performance in terms of error and variance.

The optimizer for model learning uses AdamOptimizer
(Kingma & Ba, 2015). The parameters for thdc$TM

Table 1. Parameters.

configurationis listedin Tablel. Parameters selection, such
as sequence lengths, determines the performance of t

model. But for most applications the parameters are
determined by empirical methodBo determine parameters

in P-LSTM, we conduct a simple experimetitraugh one

column used in STM to efficiently determine the seq
length and prediction cycl&he average and variance of the

error according to the input sequence length and predictic

length are applied to choose parameters

The experiment was perforgien the same model &s with

sizeof hidden stateis 32. Three experiments were performed

in which the prediction cycle was fixed at 80 cycles and the
sequence length was changed 8@ 100 and120. The

networls learn from training datasets anevaluaé the

accuracy with prediction at several cycles from 100 to 400 ¢
50 intervalswith the test dataset3.he resultare listedn the

Parameter Value

folsio] 20

o) 40

Q 80

a 20

a 40

a 40
hiddenstate size af 5
hidden state size &t 10
hidden state size &t 10
hidden state size #t 32

Table2.
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Figure 5. (a): Change of discharging voltage distribution of CS2_38. As the battery gets older, the distribution
wider. (b): The discérging time compensated entropy indices from (a). (c): The capacity degeneration curves
entropy curves at discharging (circular mark) and charging (triangular mark) whether compensated or n

different experiment dates. The distribution has a uniform
distribution as the experiment continues. The wider
distribution means, the more uncertain in expected

Table 2. The results of error variation according to 1
sequence lengths and prediction cycles.

measurement voltagfhe uncertainty makes information

Sequence| Prediction . . ) . . . .
Lgngth Cycle 04 9 entropy increase. In figure5 (b), discharging time
80 50 0001197 | 0.000879 compensatedntropy index (DE) from distributions in figure
: ' 5 (a) change as time goes by. E4).i6 used to calculate DE
100 80 0001750 | 0.001315 with | v T DE increases over time as the variance of
120 80 0.004682 | 0.003705 voltage distribution increases. The change fime

compensatedentropy index until the maximum charge
O is the mean offf i QQ QMO ME QOf&ll cycles in  capacity reac_hes about_o._2 is_shown in f_igiu_(e). In figure_
prediction coverage whil® 4 is error of 40cycles.Both 5 (€) we considethe variation in entropy indices depending
errors arelowest if the sequence length is Seigure 4 ©On whether compensated or not aberary cycle in CS2_38.
describes results including error per each prediction pointd/hén entropy index is obtaineéeom Eq. @) with a time
and variance per 10 cycles. In all conditions, the errofOMpensated termthe tendency to increase with aging
increases as the point far from the starting point is predictedf€c0mes more pronounced fhaithout compensated term
see the figure 4 (a), (bpd (c).The distribution of errors also ke in Eq. (3). As chargeable capacity decreaséme
gets bigger and bigger; see the figdrgd), (€) and (f). In compensated entropy index in charging and discharging have
figure 4 (a) and (b), the error increase rapidly after thedrastic growth.
prediction point 40. It means prediction results in a column is o
more accurate until 40 cycleSherefore, we determine the 4-3.2.Estimation SOH and RUL based on ALSTM
sequence length and prediction cycle ib$TM for RULas  Through the designed -BSTM for SOH and RUL,
80 and 40, respectively. experiment toestimate the SOH per cycle and predict the
future SOH sequence is conducted. The results of estimation
of SOHin # from battery discharging information including
entropy are described in the figul8eCS2_36 dataset is used
as test dataset. Predicting S®ased on battery measurement
Figure 5 shows thetime compensate@ntropy index in dat@ can be done by SOH estimating column network and
CS2_38 according to the battery operating cycles. T8Me compensated entropy indics additional experiment
simplify, one cycle per each experiment that were performel@S conducted to estimate SOH using CS2_33 discharged
on different days is considerefime compensatedntropy ~ With 0.5C current. In this case, CS2_34, CS2_36, CS2_37,
indices of battery are caliaied based on voltage distribution C52_38 are training datasets and C2_35 is used as a
in Eq. @). Figure 5 (a) describes discharging voltage validation dataset. For predicting near future SOH, estimated

distributions based on histogram which has 16 bins in

4.3.Results

4.3.1.Time CompensatedEntropy In dex
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SOH values fron# and# are utilized. The results from changing current environment during one operating cycle
two experiments with £STM for SOH are in the table 3.  will be performed in future studies.

SOH prediction until EOL is generated fram. Obtained
near future SOH from # is followed by predicted SOH
sequencesAfter a single prediction withx length is
performed, the prediction is utilized as an input to make
repeated predictionTwo predictions are conducted in two
cases. When CS2_36 is used assh datasetactual target
EOL (%/ )is at 504tlcycle and predicted EOL%/ ) is at

110 ¢ == estimated SOH

Z 544th cycleln the experiments with CS2_3%/ ,is at 544
,l§ and%/ ,is at 530th cycleThe difference betwee¥/ ,and
§ o5 %/ , at each case is 9 and ldspectivelyln the proposed
P-LSTM structure, based on the experience obtained fragm
00 the model predicts near future SOH fr¢gmthrough# . The
RUL prediction is performed without prior learning before
- the prediction point as well asing not theactual SOH but
estimated SOHnN Table 4, we can compare our results with
- - s oo -~ s o from (Liu, Zhao, Peng, & Hu, 2017) which conduct
Cycles experiments with same battery dataset used in this paper
Proposed B.STM model uses estimated SOH to predict
Figure6. SOH estimatiomesults with CS2_36. RUL while Liu et al. (917)assumes label SOH is given as
input data. Nevertheless, our model can predict EOL quite
Table 3. The results of SOH estimation from well.
P-LSTM for SOH.
Test Case Prediction
(Discharge) Column Target RMSE
cS2 36 # 3/ ( 0.0067
10 # 3/ ¢ 0.0077
# 3/ ¢ 0.0098
# 3/ ( 0.0211 N *
€S2_33 # 3/ ¢ 0.0147 , (@) (b)
(0.5C) m 3 0.0209 Figure7. The results from4STM for SOH and RUL. (a)
4 . and (b) are the results according to test datasets 0.5C
*CS2 33 # 3/ ( 0.0201 1C, respectively.
(0.5C) # 3/ ¢ 0.0267
# 3/ ¢ 0.0295 o
Table 4. RUL prediction results.
Due to imbalancén datasets which havd datasets with 1C Test Case | Start| Error
and 2 datasets with 0.5C, RMSE results vary depending ¢ Methods (Discharge)| from | (cycle)
the discharge current valudhe result shows,of 1C CS2.33 | o5 | 14
discharging current datasets ialin are relatively abundant, Pro d LSTM (0.5C)
) . - . pose
the accuracy is relatively high while bad performance wher CS2_36 | 5, 9
0.5Ccharging current dataset is used as the test datdmet. (¢19)
additional experiment, *CS2_33 on a table, is préuict CcS2 36 | 322 1
SOH of battery discharged by 0.5C with tietworktrained LSTM -
by datasetsnly with discharging current of 1@ur method from Liu et al. (2017 CS2 36 |422| 21

can be applied to several discharge currents through tt
current compensated term in Eq. (9he result of the P
experiment under limited conditions shows that the proposeﬂ
time compensated entropy index can be applied in an
environment where thédischarge current varieseachcycle

A more accurate estimation method and its application in

rediction onshortterm SOH is critical factor in lonterm

UL forecast. The prediction from the start point of the
prediction to the EOL is performed independently without the
Qelp of the other columnéenceit is inevitably affected by
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the result of# . In order b assure the influence of shoerm

prediction approaches. The accurate SOH estimation which

SOH prediction results on RUL prediction, two predictionis a preemptive condition of RUL prediction is performed

was conducted by using differetit inputs in the same
network. The input vector &f includes 1) the output from

# (# only) and 2) the outputs froth and# (# with# ).
Figure 8 shows the results of two predictioriigure 8 and
Table5 showpredictednearfuture SOH from P-LSTM for
SOH helps RUL prediction from-BSTM for RUL get
accuracy.

Raw SOH
= Smooth SOH
= PREDICTION : PAST
= PREDICTION : FUTURE
X PREDICTION : FUTURE

Figure8. Predictiongraph from 200th cyclef P-LSTM for
RUL according to whether shetgrm future prediction
results are included in inpued-cross mark prediction
with output of# only. green line prediction with outputs
from# with # .

Table 5. RUL prediction error according to compositic
of the input vector oft .

case %/ %/ , Error
(predction) (label) (cycle)
# with # 485 504 19
# only 449 504 55

5. CONCLUSION

Estimating the aging information of lithitiion batteries is

with thetime compensateehtropy index and enable accurate
SOH prediction of passing knowledge acquired toSkH
prediction column.The proposed model is able to predict
SOH until EOL without any additional training with test data.
We used thebattery dataset from the CALCE battery to
demonstrate thathe structurecan estimateand predicting
SOH.

The current esearch requires demonstration and
improvement for experiments in complex discharge
conditions. Therefore, the future issues are the application in
more diverse environments anghore investigation on
optimization the number of SOH input and the RUL
predicton sequences for the optimal parameter selections.
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