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ABSTRACT

The increasing interest in low-altitude unmanned aerial vehi-
cle (UAV) operations is bringing along safety concerns. Per-
formance of small, low-cost UAVs drastically changes with
type, size and controller of the vehicle. Their reliability is sig-
nificantly lower when compared to reliability of commercial
aircraft, and the availability of on-board sensors for health
and state awareness is extremely limited due to their size
and propulsion capabilities. Uncertainty plays a dominant
role in such a scenario, where a variety of UAVs of differ-
ent size, propulsion systems, dynamic performance and reli-
ability enters the low-altitude airspace. Unexpected failures
could have dangerous consequences for both equipment and
humans within that same airspace. As a result, a number of
research tasks and methodologies are being proposed in the
area of UAV dynamic modeling, health and safety monitor-
ing, but uncertainty quantification is rarely addressed. Thus,
this paper proposes a perspective towards uncertainty quan-
tification for autonomous systems, giving special emphasis
to UAV health monitoring application. A formal approach
to classify uncertainty is presented; it is utilized to identify
the uncertainty sources in UAVs health and operations, and
then map uncertainty within a predictive process. To show
the application of the methodology proposed here, the design
of a model-based powertrain health monitoring algorithm for
small-size UAVs is presented as case study. The example il-
lustrates how the uncertainty quantification approach can help
the modeling strategy, as well as the assessment of diagnostic
and prognostic performance.

1. INTRODUCTION

The number of unmanned aerial vehicles (UAVs) entering
the low-altitude airspace is expected to increase in the next
decade (Kopardekar et al., 2016; FAA, 2018). This forecast,
driven by current interests in autonomous UAV operations
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like package delivery, surveillance, etc., as well as future ur-
ban air mobility, suggests the need of systematic approaches
to enable autonomous UAV operations efficiently and safely.
Such a need is motivated by multiple factors. As addressed
in (Kopardekar et al., 2016), unmanned systems will enter
areas originally used by traditional, manned aviation. How-
ever, infrastructure and integration requirements were not de-
veloped to accommodate a mix of different vehicles and sys-
tems. Small, low-cost UAVs, which are likely to be utilized
for package delivery and other operations, do not guarantee
high reliability standards (King, Bertapelle, & Moses, 2005;
Freeman & Balas, 2014; Johry & Kapoor, 2016), suggesting
that high failure rates may be expected, especially when com-
pared to commercial aviation. Focusing on urban air mobility,
PHM tools are paramount to ensure maximum human safety
on ground as well as on-board and minimize failure rates and
service disruption.

The effect of this growing interest in low-altitude oper-
ations is a number of research activities on autonomous
UAVs, including new design, reliability, efficiency, and au-
tonomous functions. Examples of such works can be found in
(Hoffmann, Huang, Waslander, & Tomlin, 2007) for flight dy-
namics and control, (Langelaan, Alley, & Neidhoefer, 2011;
Glasheen, Pinto, Steiner, & Frew, 2019) for wind field esti-
mation, (Krishnakumar et al., 2017) on the safety of UAV op-
erations, and (Balaban et al., 2017) for dynamic routing and
decision making. More generally, interests in autonomous
vehicles also generated a number of system-level research
on the safety of the national airspace, as in (Liu & Goebel,
2018). Some system health management and PHM concepts
for UAVs were discussed in (Jing & Haifeng, 2013; Walker,
2010), while an early study on fault detection for unmanned
vehicles was presented in (Drozeski, Saha, & Vachtsevanos,
2005).

Besides studies of uncertainty affecting aircraft routing (Jun
& D’Andrea, 2003) and methods for conflict avoidance
(Albaker & Rahim, 2009), methodologies to handle and ap-
proach uncertainty affecting UAV systems and operations has
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been rarely explored. The work by Sankararaman et. al in
(Sankararaman, 2017) presented uncertainty sources influ-
encing UAV operations were identified and examples of deci-
sion making strategy based on those uncertainty sources were
presented.

This work proposes a methodology for uncertainty identifi-
cation and quantification, with focus on PHM applications
for autonomous unmanned vehicles. The paper presents a
formal approach to uncertainty representation and quantifi-
cation, where the main uncertainty sources are identified and
then mapped into a predictive estimation process, where the
input-output relationships of predictive estimation are dis-
cussed. This research leveraged material in (Smith, 2013),
and previous works on uncertainty for PHM applications pre-
sented in (Sankararaman, 2015; Goebel, 2017). Besides the
process has been developed in the context of autonomous
UAVs, it can be easily translated and implemented to other
systems. The predictive estimation process is applied to
a physics-based powertrain health monitoring system com-
posed of a Lithium-ion (Li-ion) battery, electronic speed con-
troller (ESC), and brushless DC motor. The proposed ap-
proach helps mapping the input-output relationships of the
powertrain health monitoring system and helps modeling of
uncertainties in each of its elements. The uncertainty can then
be propagated through the different model equations to quan-
tify the uncertainty of the system dynamics in nominal condi-
tions. The introduction of synthetic faults in the system will
help quantitative assessments of the health monitoring sys-
tem’s performance in presence of uncertainty.

2. FORMAL APPROACH TO UNCERTAINTY QUANTIFI-
CATION

This section discusses some key aspects of uncertainty quan-
tification from a global perspective. Such a formal approach
enables the identification, interpretation, and classification of
different uncertainty sources affecting the predictive estima-
tion process. Although both aleatory and epistemic uncer-
tainty are considered, a source of uncertainty will be catego-
rized as aleatory or epistemic only if beneficial for the dis-
cussion. This approach will serve as the foundation for the
identification of uncertainty sources in the UAV powertrain
health monitoring system discussed in Section 3.

A high-level subdivision of uncertainty sources is presented,
combining information from (Smith, 2013), Chapter 1, and
(Goebel, 2017). Besides in this holistic perspective, the
sources should be then considered relative to the specificity
of the application, since some of them may not be relevant
for some scenarios.

The macro-categories model, method, measure, and input
have been chosen to represent the uncertainty sources of pre-
dictive estimation. Each of them comprises of sub-categories

which are depicted in figure 1, and they are discussed in the
next subsections.

2.1. Model

Model uncertainty has been divided in model abstraction and
model parameters. Model abstraction refers to the hypothe-
ses introduced during model development with the intent of
representing reality and physical processes through a set of
equations. Those hypotheses include neglecting or simplify-
ing (for example, through linearization, reduced order mod-
els) physical phenomena, environmental effects, and other
external factors that may interact with the system, but their
effect on the quantities of interest (QoIs) is believed to be
limited.

Model parameters include fixed or variable coefficients re-
quired to estimate the output QoIs from the model. They may
be unknown, or believed to fall within a range of values, or
again defined by random variables and therefore represented
through probability density functions (pdfs). They may de-
pend on system’s properties, and they may also evolve over
time because of degradation phenomena.

2.2. Methods

Here, methods refers to the collection of algorithms and com-
putation tools utilized within a certain model to compute the
QoIs, to interpolate or extrapolate input variables from in-
put data, or to perform prediction by propagating information
through models or in time domain. The sources of uncertainty
belonging to this category have been divided into algorithms
and numerical errors.

Algorithms for estimation, interpolation or extrapolation in
multi-dimensional spaces introduce uncertainty because they
may converge to sub-optimal solutions trying to minimize
errors or cost functions. Such cost functions may be non-
convex or complex hyper-surfaces if the system is nonlinear.
As a result, different runs of the algorithms may generate dif-
ferent results because the algorithms remain trapped in lo-
cal minima. Numerical errors include roundoff or discretiza-
tion errors, which is typically small when compared to other
sources (Smith, 2013), but it may not be negligible for certain
engineering or physics applications.

2.3. Measures

This category includes measure incompleteness, uncertainty
in measurement equipment, which typically translates into
sensor resolution, accuracy and precision, and systematic er-
rors generated by the measuring process, sensor installation
and human error (if humans are involved in the measuring
process).
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Figure 1. High-level classification of uncertainty sources encountered in a predictive process.

2.4. Input

The definition of input used in this work includes time-
dependent variables, initial and boundary conditions, and ex-
ogenous forces that may interact with the system and there-
fore affects its dynamics. Some inputs are actually oper-
ational requirements defined according to the system’s in-
tended function, and they are called operational input (e.g.,
desired trajectory of an autonomous vehicle or angular speed
of a rotating machinery). External inputs are generated by
external forces or events which depend on the operational en-
vironment of the system. They can also be called environ-
mental or exogenous input, and are typically characterized
by large uncertainty. Initial and boundary conditions refer to
both external and system’s variables. For example, the initial
degradation state of a system’s component may be uncertain.
If such a component is already in a degraded state, its progres-
sive degradation during operation will likely be faster than if
the component were healthy.

2.5. Mapping uncertainty sources in the predictive esti-
mation process

Figure 2 shows a diagram of the high-level predictive process
structure proposed in this work. The sources of uncertainty
discussed in figure 1 are tightly connected to this structure.
From left to right, we introduce the measure space, which
represents quantities that have to be measured. Those split
into system’s variables and external variables. The former
are the QoIs directly linked with the system’s state or some
system’s property, while external variables are the QoIs rep-
resenting external or exogenous inputs.

The input space represents those variables not belonging to
the system that is being monitored but affect the system’s dy-
namics. The input space overlaps with the measured space,
since external variables have to be, somehow, estimated or
measured. As discussed in subsection 2.4, operational vari-
ables define the intended or desired behavior of the system
(e.g., the flight plan for an autonomous aircraft). Operational

variables do not typically require measurement processes,
and they are then placed outside of the measured space.

Measured space and Input space variables feed the represen-
tation space, which comprises of system’s models and in-
put models. While the introduction of the system’s model
is self-explanatory, the reason for incorporating input models
is twofold. As stated earlier, models of engineering systems
are often described by differential equations or complex sys-
tems of equations, and input specifications may not be written
in a form that is directly implementable into those equations.
For example, a flight plan for autonomous UAVs composed
of way points and cruise speed needs to be converted into a
desired trajectory profile if the aircraft’s model (i.e., the sys-
tem’s model) is a 6 degrees-of-freedom equation of motion.
Input models play a relevant role also for external variables.
Some external variables affecting the system’s dynamics may
be hidden (not directly measurable), and therefore a model to
extract the latent variable(s) from observations is necessary.
Often, external variables are non-deterministic and affected
by large uncertainty, and a model to perform quantification
and look-ahead forecast becomes a necessity. Another exam-
ple is represented by external input information available on
a coarse grid, which is not suitable for the resolution of the
models that are being adopted, and therefore require interpo-
lation and extrapolation methods.

The fourth block represents the computing space, where nu-
merical tools and models are combined to provide an estima-
tion of the current QoIs of the system and their future values.
Intuitively, the estimated prediction at the end of the process
is affected by the uncertainty sources of all previous three
spaces. The connection between input models and prediction
methods has been highlighted since it is clear that input mod-
els help improving the forecast of QoIs by providing a statis-
tical quantification (and therefore the related uncertainty) of
future values of external variables.
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Figure 2. Predictive process structure. The bottom arrow describing uncertainty propagation does not indicate that uncertainty
is introduced only in the measure and input spaces, but it rather indicates that all the elements in the predictive process introduce
uncertainty, which increases from left to right.

3. APPLICATION TO AN ELECTRICAL POWERTRAIN
HEALTH MONITORING SYSTEM

In this section, the predictive process is applied to the design
of a health monitoring system for electrical powertrain typ-
ically installed in small, low-cost UAVs. The health mon-
itoring system composes of a electrochemistry model for
Li-ion batteries developed in (Daigle & Kulkarni, 2013),
a model for the electronic speed controller (ESC) com-
posed of a pulse-width modulation (PWM) system and 6
switches (Gorospe, Kulkarni, Hogge, Hsu, & Ownby, 2017),
and the dynamic model of the brushless DC motor utilized to
actuate rotors. The diagram of the health monitoring system
is presented in figure 3.

3.1. Overview of powertrain models

This subsection summarizes key elements of each sub-model
involved in the powertrain health monitoring system. For
more information about the models and the equations they
require, the reader is referred to Appendices A and B and ref-
erences therein.

The ESC is modeled as ideal power inverter employing PWM
and half-bridge drivers for each of the three phases within a
control block. The PWM modulates three sine waves with
carrier frequency f and phase shifts ϕ = {0, 2π/3, 4π/3}
using a saw-tooth wave with frequency fst. The output is a
three phase voltage with duty cycle depending on f and fst,
(Pillay & Krishnan, 1989; Holtz, 1992).

The model structure composes of two inputs; battery’s output
voltage V and the three modulated square waves from PWM,
F1, F2, and F3. The switch matrix is a design property of
the system, and therefore can be considered a model parame-
ter. The three modulated square waves are pre-multiplied by
the switch matrix and the battery’s output voltage, as in Eq.
(1). The output is a three-phase voltage vab, vbc, vca, with

phase shift of±2/3π among one another, which becomes the
input of the motor’s electrical dynamic model (see the motor
dynamic model in Appendix B).

vabvbc
vca

 = V

 1 −1 0
0 1 −1
−1 0 1

F1

F2

F3

 (1)

Even if not specified, battery’s output voltage V and output
PWM signals Fi, ∀ i = {1, 2, 3} are obviously time-varying.

The structures of the motor model and the battery discharge
model are sets of first order differential equations, in the form:

ẋ = fp(x,u)

where p is the vector of model parameters and u is
the input vector. State vectors are defined by x =
[qs,p, qb,p, qb,n, qs,n, V

′
o , V

′
η,p, V

′
η,n]T and x = [ia, ib, ωm]T

for the battery and motor model, respectively. For the
motor dynamic model, the vector of model parameters is
p = [B, J,Rs, LM , ke]

T (each element is defined in Ap-
pendix B). For the battery model, the parameter vector is not
reported for the sake of brevity (since uncertainty on those
parameters is not discussed), and the reader is referred to
(Daigle & Kulkarni, 2013) for the complete set of param-
eters. The motor model parameters can be extracted from
manufacturer data-sheets or estimated from experimental
tests, while the parameters of the electro-chemistry battery
model do require estimation from characterization test pro-
files. The input of the battery model is the applied current
u = i. The input of the motor model composes of: (i) two of
the three-phase input voltages (vab and vbc) (ii) three-phase
back-emf voltages ea, eb, ec, and (iii) load torque Tl, so
u = [vab, vbc, ea, eb, ec, Tl]

T . It should be noticed that motor
model input vector is composed of both operational input,
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Figure 3. Framework for powertrain health monitoring uncertainty quantification.

that is the desired applied three-phase voltages, and external
input T l which depends on exogenous variables. Random
variables representing the model error (or model noise) are
discussed in more detail in Section 4.

3.2. Simplifying assumptions

For this specific application, un-modeled physical phenom-
ena are neglected, therefore uncertainty referring to the model
abstraction is not considered. Moreover, uncertainty in the
battery model parameters is also neglected. The reason is
the large number of model parameters; defining those as ran-
dom variables without careful selection of the distribution
functions or fine tuning of the dispersion indices (e.g., vari-
ance or parameter ranges) may easily lead to divergence of
the model. Furthermore, probabilistic methods do not typi-
cally consider all model parameters as uncertain. Often, only
a subset of them is reponsible for the majority of the out-
put variance. A reasonable approach, left to future steps of
this research, is to utilize local and global sensitivity anal-
ysis methods to indetify the effect of model output against
parameter variations. Example of such approaches are avail-
able in (Sankararaman & Mahadevan, 2013; Saltelli, Taran-
tola, Campolongo, & Ratto, 2004).

This task is left to future refinement of the framework. Mo-
tor’s model parameters can be described by random variables
to encapsulate uncertainty on the model dynamics. Moreover,
the motor model external input, T l, is likely to be affected by
uncertainty, since external load may vary according to con-
trol commands and operating conditions. Additional details
are discussed in Section 4.

For the sake of brevity, uncertainty in the observed quanti-

ties due to measurement errors is not discussed, and is left
to future works on the proposed framework. On the other
hand, it should be noticed that a number of methodologies to
incorporate measurement uncertainty are easily available in
literature, such as a number of regression techniques that in-
corporate measurement errors (Smith, 2013), Bayesian filters
(Arulampalam, Maskell, Gordon, & Clapp, 2002), or data-
driven methods such as Gaussian processes (Rasmussen &
Williams, 2006).

4. REPRESENTING UNCERTAINTY IN THE POWER-
TRAIN MODEL

In this section, the approach to model the uncertainty in the
powertrain health monitoring system is discussed. The mod-
els referred in this section are available in the Appendices and
references therein.

4.1. Battery

The QoI is the output voltage V , which defines the energy in-
troduced in the powertrain to produce the torque on the rotor
and so the thrust to operate the vehicle. Given the complexity
of the electro-chemistry battery model utilized in this work,
a sampling-based approach is suggested. The state vector x
from Eq. (A.9) is considered a random vector, where the Li-
ions qs,p, qb,p are defined by random variables. They repre-
sent the number of Li-ions on the positive side of the surface
qs,p and bulk qb,p of the cell, respectively. Since qs,n, qb,n,
as well as the voltages V ′, are derived quantities, they also
become random variables. Independent, Gaussian pdfs have
been utilized to compute random realizations of qs,p, qb,p in
a Monte Carlo fashion, using Euler’s forward method:
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qs,p,k = qs,p,k−1 + q̇s,p,k−1∆tk−1 + σqs,p
√

∆tk−1 r1 ,

qb,p,k = qb,p,k−1 + q̇b,p,k−1∆tk−1 + σqb,p
√

∆tk−1 r2 ,

(2)

where r1 and r2 are two independent realizations from the
standard Normal distribution, and k indicates the time step.
Rates of change q̇s,p,k−1 and q̇b,p,k−1 are computed from Eq.
(A.1). The random shocks introduced by σql,p r1 and σql,p r2
are scaled by

√
∆t for consistency with Wiener process and

Brownian motion used in stochastic differential equations
(Lawler, 2010). By doing so, the variances of the two stochas-
tic processes scale linearly with time. The two standard devi-
ations σqs,p and σqb,p should be properly quantified to reflect
the variability observed in experimental tests.

Figure 4 shows, as an example, the output of a single cell
modeled using Eq. (2), with initial voltage V0 = V (t = 0) ∼
N (4.6, 0.316), σ2

qs,p = σ2
qb,p

= 10.0, and assuming a con-
stant discharge rate with required power P = 8 W. The sim-
ulation parameters were ∆t = 1e − 1 s, N = 1000 samples,
and final simulation time 100 s. The kernel density estimate
of the voltage at time 100 s, computed with the Monte Carlo
samples and Gaussian kernel with bandwidth equal to 0.125,
is compared against a Gaussian distribution, figure 4b.

4.2. Electronic speed controller

Uncertainty affecting the elements of the ESC in Eq. (1)
is modeled in different ways. The sine wave carrier fre-
quency f could be represented by a deterministic value or
a random variable with, typically, small uncertainty on its
nominal value. It may decrease during operation because of
slower switching actions of degraded MOSFETs (Gorospe et
al., 2017), which are not modeled in the framework proposed
here. Its degradation should be represented by a always-
negative rate of change, to ensure that f is actually decreas-
ing, and not increasing, over time. Consequently, uncertainty
on the rate of change should reflect this monotonic behavior.
A possible solution could include a negative log-Normally-
distributed rate of change:

fk = fk−1 −
df

dt

∣∣∣∣
k−1

eη , (3)

where the deterministic value df/dt is multiplied by eη , and
η ∼ N

(
−σ2

η/2, σ
2
η

)
to ensure that f is decreasing as time

passes by. The minus sign − has been used to stress the fact
that f is decreasing, although it could be embedded in df/dt.
A suitable function to define the rate of change of f should
be tuned based on historical data on MOSFETs degradation.
It should be noticed that this degradation is expected to be
slow. For the specific application of UAV health monitoring,
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Figure 4. Simulation of battery discharge at constant power.
Monte Carlo samples are shown in 4a, while the resulting ker-
nel density estimate is compared against a Gaussian distribu-
tion in 4b. Only a subset of all samples has been represented
in 4a to appreciate the different paths.

changes in the PWM excitation frequencies are likely to be
negligible in a single UAV flight, although the value of f may
be different from the nominal value due to previous aging.

An example of ESC signal computed with nominal carrier
frequency f = 1 Hz and fst = 20 Hz is shown in figure
5, where it is compared against the same signal with a re-
duced carrier frequency f∗ = 0.95f . The low frequency val-
ues were chosen to appreciate the difference between the two
cases.

We modeled switch failures by abrupt changes in the switch
matrix in Eq. (1), using a typical reliability-based approach
(Ginart, Brown, Kalgren, & Roemer, 2009), where switch re-
liability is defined by failure rates λ(t). The elements equal
to 1 and −1 in the switch matrix will become 0s when a fail-
ure of the corresponding MOSET switches occurs (Celaya,
Saxena, Kulkarni, Saha, & Goebel, 2012). By so doing,
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Figure 5. Example of PWM (5a) and ESC (5b) output sig-
nals in case of healthy (blue), and degraded (dashed orange)
MOSFET. Figure (5a) shows the F1 signal, while (5b) shows
all three phase voltages computed from output voltage of a
single cell V ≈ 4V. In this example, δf = 0.05f .

uncertainty in the switch matrix is defined through mean-
time-between-failure or similar quantities. An example of the
three-phase voltages from a switch failure is shown in figure
6, where the element (2,3) of the switch matrix in Eq. (1),
originally equal to -1, has been replaced by 0.

Last, the voltage V in Eq. (1) is the output voltage of the
battery, which is modeled as a random variable, already dis-
cussed in Subsection 4.1.

4.3. Motor

As discussed in Section 3, motor model parameters could be
represented by random variables to encapsulate the model
parameter uncertainty within the model. According to the
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Figure 6. Example of three-phase voltages from ESC with
a switch failure. The legend indicates that the switch matrix
(SM) element in position (2, 3) has been replaced by 0.

available information, the availability of experimental data,
or according to sensitivity analysis performed on the model,
the algorithm designer could decide to use a deterministic
value for a specific parameter (e.g., electric resistance Rs),
and describe the other parameter(s) through probability dis-
tributions. In this work the methodology to describe those
parameters is presented, and that same methodology could
be applied to some (of all) the motor model parameters for
statistical assessment of the model. Because of their physical
meaning, all model parameters in [B, J,Rs, LM , ke]

T have to
be strictly positive, IR+. As a consequence, Gaussian distri-
butions may not be suitable for describing the uncertainty in
those parameters, especially if their value is (relatively) close
to 0. Let us consider, for example, the friction coefficient
B and motor inertia J . Their distributions can be defined
through a log-Normal transformation by simply using:

lnB ∼ N
(
µlnB , σ

2
lnB

)
,

ln J ∼ N
(
µln J , σ

2
ln J

)
,

(4)

assuming thatB and J are independent random variables (the
generalization to the case σlnB,ln J 6= 0 is straightforward by
introducing a multi-variate Normal distribution). Examples
of the two log-Normal distributions are shown in figure 7.

An example of angular velocity output from the model in
(B.1) using samples from the distributions of B and J is visi-
ble in figure 8. The effect of different inertia values is clearly
visible in the transient period necessary to reach the steady-
state regime. In order to emphasize the effect ofB and J sam-
ples, the graph was generated neglecting dynamics effects on
the back-emf voltage and external load torque Tl.
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Figure 8. Example of motor speed variations from 0 up to a
steady-state regime (nominal speed ωn = 675 RPM).

5. CONCLUSIONS

This work proposed a framework for uncertainty quantifica-
tion of engineering systems, with a focus towards unmanned
aerial vehicle systems and operations. A formal approach
starting from a high-level description of uncertainty sources
has been utilized to design the framework. Those sources are
included within a predictive estimation process, where they
are divided into spaces. The key elements within the spaces
and their input-output relationships are highlighted. The de-
sign of a powertrain health monitoring system for small UAVs
has been used as case study. The framework helped identi-
fying modeling properties as well as input and parameters.
The health monitoring system can leverage the proposed un-
certainty quantification methodology to maximize the perfor-
mance of fault detection and isolation techniques and mini-

mize false alarms. For example, one may refine the definition
of fault indicators based on observed uncertainty, or compute
uncertainty bounds on those same fault indicators based on
the uncertainty observed in models, measure, input and com-
puting methods.

Future work includes both (i) the extension and application of
the proposed framework to other sub-systems, and (ii) further
development of the proposed powertrain health monitoring
system. On the former, uncertainty of manipulated variables
controlled using a feedback loop is of great interest for au-
tonomous operations. Sensitivity analysis was not discussed
in this work, but is one of the natural, subsequent steps to
address uncertainty quantification of the monitored system.
The proposed powertrain health monitoring system could be
enhanced by studying the effect of input uncertainties into the
motor performance and related subsystems. Such a study may
help understanding the advantages as well as the limitations
of the diagnostic capabilities of the health monitoring system.
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APPENDICES

A. ELECTRO-CHEMISTRY BATTERY MODEL

The model relies on ordinary differential equations to esti-
mate the QoI. The voltage terms of the battery are expressed
as functions of the amount of charge in the electrodes. Each
electrode, positive (subscript p) and negative (subscript n),
is split into two volumes, a surface layer (subscript s) and a
bulk layer (subscript b). The model equations describe how
charge moves through those volumes. The rates of change of
the charges q, defined by q̇, are described using

q̇s,p = iapp + q̇bs,p ,

q̇b,p = −q̇bs,p + iapp − iapp ,

q̇b,n = −q̇bs,n + iapp − iapp ,

q̇s,n = −iapp + q̇bs,n ,

(A.1)

where iapp is the applied electric current. The term q̇b,s,i de-
scribes diffusion from the bulk to surface layer for electrode
l:

q̇b,s,l =
1

D
(cb,l − cs,l) , ∀ l = {n, p} , (A.2)

where subscript l generally refers to the positive p or nega-
tive n electrode, and D is the diffusion constant. The Li-ion
concentrations are expressed by c:

cj,l =
qj,l
vj,l

, ∀ l = {n, p}, j = {s, b} . (A.3)

Note now that the following relations hold:

ql = qs,l + qb,l , ∀ l = {n, p} ,

qmax = qs,p + qb,p + qs,n + qb,n .
(A.4)

The mole fraction, utilized to calculate the different voltages,
is computed based on charges q:

xl =
ql
qmax ,∀ l = {n, p} ,

xj,l =
qj,i
qmax
j,i

,∀ l = {n, p}, j = {s, b}
(A.5)

where qmax = qp + qn refers to the total amount of available
Li-ions. It follows that xp + xn = 1. For Li-ion batteries,
when fully charged, xp = 0.4 and xn = 0.6. When fully dis-
charged, xp = 1 and xn = 0 (Karthikeyan, Sikha, & White,
2008).

The overall battery voltage V consists of several electrochem-
ical potentials. Starting from the positive current collector,
the equilibrium potential is VU,p. This voltage is then re-
duced by Vs,p, due to the solid-phase Ohmic resistance, and
Vη,p, the surface overpotential, at the positive collector side.
The electrolyte Ohmic resistance then causes another drop
Ve. Similarly to the positive electrode, there is a drop Vη,n at
the negative electrode due to the surface overpotential, and a
drop Vs,n due to the solid-phase Ohmic resistance. The volt-
age drops again due to the equilibrium potential at the nega-
tive current collector VU,n. These voltages are described by
the following set of equations:

VU,l = U0 +
RT

nF
ln

(
1− xs,l
xs,l

)
+ VINT,l ,

VINT,l =
1

nF

Nl∑
k=0

Al,k

(
(2xl − 1)k+1 − 2xlk(1− xl)

(2xl − 1)1−k

)
,

Vo = iappRo ,

Vη,l =
RT

F α
arcsinh

(
Jl

2Jl,0

)
,

(A.6)

where U0 is a reference potential, R is the universal gas con-
stant, T is the electrode temperature (in K), n is the number of
electrons transferred in the reaction (n = 1 for Li-ion), and F
is Faraday’s constant. VINT,l is the activity correction term (0
in the ideal condition). We use the Redlich-Kister expansion
with Np = 12 and Nn = 0 to compute VINT,l (see (Daigle &
Kulkarni, 2013)). The current density and the total voltage of
the battery are expressed by:

Jl =
i

Sl
,

Jl,0 = kl(1− xs,l)α(xs,l)
1−α ,

V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n ,

(A.7)

where Jl is the current density, Jl,0 is the exchange current
density, and kl is a lumped parameter of several constants in-
cluding a rate coefficient, electrolyte concentration, and max-
imum ion concentration. The terms to compute the total volt-
age V are defined by:
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V̇ ′o =
Vo − V ′o
τo

,

V̇ ′η,p =
Vη,p − V ′η,p

τη,p
,

V̇ ′η,n =
Vη,n − V ′η,n

τη,n
,

(A.8)

where the parameters τ are empirical inertia constants (used
since the voltages do not change instantaneously). The state
vector, input vector, and output vector of the model are de-
fined follows:

x =
[
qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p, V ′η,n

]T
,

u = u = iapp ,

y = y = V .
(A.9)

Parameter values for a typical Li-ion cell are given in (Daigle
& Kulkarni, 2013).

B. MOTOR DYNAMIC MODEL

The model describes the dynamics of a three-phase brushless
DC motor, with wye-connected stator windings and a perma-
nent magnet as the rotor. Such a model was already described
and utilized in (Gorospe et al., 2017). The Newton’s second
law of motion describes the basic motor dynamics:

ω̇m =
1

J
(−Bωm + (Te(e, i)− Tl)) , (B.1)

where ωm is the rotational speed of the rotor, J is the me-
chanical inertia, B is the friction coefficient, and Tl ∝ ωm is
the load torque on the rotor. The electrical torque is defined
as:

Te(e, i) =
1

ωm
eT i . (B.2)

where the column-vector e contains the back-emf voltage,
ea, eb, and ec, and i = [ia, ib, ic]

T . The back-emf volt-
ages are modeled as trapezoidal waves that are function of
the rotor position (Rambabu, 2007; Gorospe et al., 2017), but
they are not reported here for the sake of brevity. The in-
terested reader is referred to (Rambabu, 2007) for the trape-
zoidal wave equations utilized to represent the back-emf volt-
ages. Using the simplifying hypotheses in (Gorospe et al.,
2017), we can write the electrical dynamic equations as:

d

dt

[
ia
ib

]
= − Rs

LM

[
ia
ib

]
+

1

LM

[
2 1
1 1

] [
vab
vbc

]
+

− 1

LM

[
2 −1 −1
1 0 −1

][ea
eb
ec

]
,

(B.3)

where LM is the difference between self and mutual induc-
tances (assumed equal for each phase), and Rs is the re-
sistance of each phase (also assumed identical for the three
phases). Equation (B.3) is two-dimensional given the linear
dependency of currents and voltages on the three phases, i.e.,
ia + ib + ic = 0. Further information are not reported for the
sake of brevity. The interested reader is referred to (Gorospe
et al., 2017) for more details about the motor dynamic model.
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