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ABSTRACT

Despite significant attention to online health monitoring and
prognostics of bearings, many common health indicators are
not sensitive to early stages of degradation. This research
investigates the use of approximate entropy (ApEn), previ-
ously developed for fault diagnostics, as a health indicator
for prognostics. ApEn quantifies the regularity of a signal; as
bearings degrade, the frequency content of vibration signals
changes and affects the ApEn as the vibration becomes more
chaotic. Early results suggest ApEn supports earlier degra-
dation detection and more predictable progression from fault
to failure. This research focuses on optimizing parameters of
the ApEn calculation to provide guidance across a variety of
bearing types, sizes, and geometries in both steady-state and
transient operation.

1. PROBLEM STATEMENT

Bearings are a common failure point for most rotating equip-
ment. Predicting the presence of a bearing fault can be
done with a variety of methods including: Fourier analysis,
wavelets, and Hilbert transforms (Lebold, McClintic, Camp-
bell, Byington, & Maynard, 2000). However, the remaining
useful life (RUL) of a bearing is difficult to predict without a
clear indication of the bearing’s current health. For bearings
in particular, the transition from a healthy state to a failed
state may seem abrupt depending on the health indicator. The
goal of my dissertation is develop a health indicator that can
gives earlier indication of fault initiation and better fault pro-
gression characteristics.

2. EXPECTED CONTRIBUTIONS

My research focuses on improving the Approximate Entropy
(ApEn) statistic from a diagnostic tool into a health indicator
for prognostics. ApEn measures the regularity of a signal. As
a bearing degrades, there is an increase in the number of fre-
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quency components. This will decrease the regularity of the
signal thus increasing the ApEn value. Regular or repetitive
signals have low ApEn values, while irregular or noisy sig-
nals have high ApEn values (Caesarendra, Kosasih, Tieu, &
Moodie, 2013). This feature looks to be a promising health
indicator, because it has an early fault detection time and
trends both intuitively and favorably as the fault progresses.

The first step in calculating the ApEn is to convert the in-
put signal into a phase space. This is done as the first step
in several other nonlinear, feature-extraction methods includ-
ing: largest Lyapunov exponent, correlation dimension, and
fractal dimension (Williams, 1998). The input signal is time
series data, such as Y = (y1, y2, ..., yN ). The time series Y
then would be reconstructed into the phase space X following
the form seen in equation 1

X =


y1 y1+J y1+2J · · · y1+(m−1)J
y2 y2+J y2+2J · · · y2+(m−1)J
...

...
...

. . .
...

yM yM+J yM+2J · · · yM+(m−1)J

 , (1)

where J represents the lag, m is the embedding dimension,
and M is the number of reconstructed vectors. Both the lag,
J, and the embedding dimension, m, are predetermined. The
lag spaces out the time series data to try and capture un-
derlying features of the data. The lag can be chosen based
on autocorrelation-function indicators or simply via a guess-
then-check method (Williams, 1998). The embedding dimen-
sion increases the length of each reconstructed vector, which
has a direct computational cost. Small embedding dimen-
sions are preferred for their expediency and simplicity of in-
terpretation, so m=2 was chosen (Williams, 1998).

The maximum difference is calculated between the corre-
sponding elements of two reconstructed vectors as seen in
equation 2
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d[X(i), X(j)] = max
k=1,2,...,m

(|x(i+k−1)−x(j+k−1)|), (2)

where i = 1,2,...,N-m+1, j = 1,2,...,N-m+1, and N is the num-
ber of data points in the reconstructed vectors (Yan & Gao,
2007). For each vector, the similarity between that vector and
every other vector is computed in equation 3

Cm
r (i) =

1

N − (m− 1)

∑
j 6=i

Θ{r − d[X(i), X(j)]}, (3)

where j6= i, r is a predetermined tolerance, and Θ is the Heav-
iside function. This similarity is a measure of pattern fre-
quency within the phase space within a tolerance of r given a
window length of m.

r = k ∗ std(S), (4)

The tolerance, r, is defined as equation 4 where k is a positive
constant, std is the standard deviation, and S is a population of
related time series data. The natural logarithm of each Cm

r (i)
is then averaged, seen in equation 5.

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

ln(Cm
r (i)) (5)

The embedding dimension is then increased by one and each
step is repeated to calculate φm+1. The ApEn value is de-
noted by equation 6.

ApEn(m, r) = φm(r)− φm+1(r) (6)

Previous literature utilized ApEn to differentiate bearing de-
fects from unfaulted bearings (Caesarendra et al., 2013; Yan
& Gao, 2007). My research looks to advance this feature for
use as a prognostic parameter to predict the RUL for bearings.
The tolerance, calculated in equation 4, is a key component
in the ApEn formulation with a wide range of recommended
values. My research looks to determine the ideal tolerance
for prognostics using multi-objective optimization methods to
maximize ApEn’s prognostic metrics of monotonicity, trend-
ability, and prognosability (Coble & Hines, 2009). This will
ensure that not only can ApEn be used to differentiate be-
tween faulted from unfaulted components but also be used as
a health indicator. Once the ideal tolerance has been chosen,
prognostic models will be created, tested, and validated using
real, run-to-failure data.

I will be examining bearings under both stationary and non-
stationary operating conditions to study how this affects the

ApEn. Nonstationary operating conditions are commonly
seen during start-up, shutdown, and transients in operation.
I plan to combat the changes in velocity during nonstationary
operation with adaptive resampling. This technique converts
nonstationary, time-series vibration data into the stationary
angular domain through the use of a tachometer (Blough &
Professor, n.d.).

A warning system will be created based on the approximate
entropy of other features related to the health of the system,
such as vibration root mean square (RMS) and kurtosis. Ac-
cess to raw vibration data may be limited due to the large
space requirements, so features of the data are stored in lieu
of the raw data. The ApEn of these features may also be
useful in determining the health of a system. Although the
feature may not have crossed a failure threshold, the changes
in the regularity of these features could provide earlier indi-
cations that the system is no longer in an unfaulted state. I
am working to develop a system will notify the end user that
changes are occurring within these variables, and inspection
of the system is required.

The maximum difference in equation 2 is essentially a dis-
tance measurement. By changing the input from a simple
time-series vector into a time-series matrix composed of mul-
tiple signals representing the state of the system, the regu-
larity of multiple signals can be determined at once. This
approach looks to combine multiple features to represent the
system then use the ApEn algorithm to produce a single num-
ber to be interpreted.

3. RESEARCH PLAN

The research plan can be summarized into four steps:

1. Data collection and generation.

2. Optimization of ApEn tolerance.

3. Development of diagnostic and prognostic models.

4. Comparison to current best practices.

3.1. Work Performed

A small bearing test bed has been constructed to produce non-
stationary, run-to-failure data for roller ball bearings. The test
bed consists of a motor, the test bearing housing, a spring
assembly, and an alternator. The motor is controlled by a
variable frequency drive (VFD), so the velocity profile will
vary in user-defined patterns. The spring assembly provides
a radial load to the test bearing housing, while the alterna-
tor provides a load for the shaft to turn. Each test bearing is
first pre-seeded with an outer race fault then installed into the
bearing test bed. During operation, the spring assembly pro-
vides a radial load to the test bearing housing equating 85%
of the bearing’s dynamic load capacity to hasten the degrada-
tion process. The bearings are ran under a sinusoidal velocity
profile. Many measurements are taken throughout each run
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including vibration, temperature, acoustic, spring load, mo-
tor current, and shaft speed.

Run-to-failure data has been acquired from other sources as
well. The NASA data repository hosts two sets of run-to-
failure bearing data (J. Lee & Services, 2007). These data
sets do not contain a large population of runs, but they have
been studied by many other scientists. This will provide an
opportunity to compare the diagnostic and prognostic mod-
els created in this research with models and methods used by
others. Accelerated motor degradation testing was performed
at the University of Tennessee Knoxville. This test was de-
signed to produce failures in the stator wiring by simultane-
ously overheating and overloading the motors. Sixteen mo-
tors were ran to failure and will be examined to determine if
ApEn is a suitable health indicator for not only bearings but
also motors and rotating equipment in general.

Figure 1. ApEn shows an earlier indication that a fault has
occurred and a more monotonic trend than vibration RMS
and kurtosis for a bearing outer race fault.

The ApEn threshold was first optimized to maximize the
monotonicity of the ApEn value for a single bearing run using
a basin-hopping technique. This threshold value will be used
as the initial guess for future multi-objective optimization.
In figure ??, ApEn is compared to commonly used bearing
health indicators, vibration RMS and kurtosis, for a bearing
with an outer race fault. Each feature has been normalized,
so they can be adequately compared. ApEn shows both an
earlier indication of fault initiation, noted by the red arrow,
and a more monotonic trend of damage progression.

3.2. Remaining Work

Work still remains on generating nonstationary, run-to-failure
data using the small bearing lab. The ApEn will be calculated
for a population to see if the same advantageous qualities seen

during stationary operation is present during non-stationary
operation. Multi-objective optimization will select the ideal
ApEn tolerance based on the resulting ApEn’s measures of
monotonicity, trendability, and prognosibility.

Raw vibration data will be used as the input for the ApEn
algorithm in prognostic models. A early-warning system
will also be constructed using other features, such as vibra-
tion RMS and kurtosis, as the input for the ApEn algorithm.
Changes in the regularity of these features may indict changes
within the system itself. A multi-parameter input for the
ApEn algorithm will be created to compare changes in the
regularity of states within the system rather than comparing a
single feature.

4. CONCLUSION

ApEn appears to be a promising health indicator with early
fault detection and monotonic trending. This work hopes to
push more maintenance strategies from preventative main-
tenance to condition-based maintenance through the use of
more accurate and precise health indicators for rotating ma-
chinery.
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