Aircraft Trajectory Prediction using LSTM Neural Network with Embedded Convolutional Layer



Published Sep 22, 2019
Yutian Pang Nan Xu Yongming Liu


The development of convective weather avoidance algorithm is crucial for aviation operations and it is also a key objective of the next generation air traffic management system. This paper proposes a novel network architecture that embeds convolutional layers into long short-time memory (LSTM) cells to predict the trajectory, based on the convective weather condition along the flight plan before the aircraft takeoff. The data used in the experiments are history flight track data, the last on-file flight plan, and the time-dependent convective weather map. The history flight data are taken from NASA Sherlock database and the weather data used in this paper is the Echo Top (ET) convective weather product from Corridor Integrated Weather System (CIWS). The experiment is conducted using three months history data over the period from Nov 1, 2018 through Feb 5, 2019 with the flights from John F. Kennedy International Airport (JFK) to Los Angeles International Airport (LAX) but the methodology can be applied to the flights between any arbitrary two airports. Interpolation is performed on flight plans and real history tracks to fix the fold number of LSTM cell and also reduce computation complexity. The training loss is defined as the standard Mean Squared Error (MSE) of the predicted tracks and the real history tracks. Adam optimizer is used for backpropagation. Learning from the real historical flight data, the out-of-sample test shows that 47.0\% of the predicted flight tracks are able to reduce the deviation compared to the last on-file flight plan. The overall variance is reduced by 12.3\%.

How to Cite

Pang, Y., Xu, N., & Liu, Y. (2019). Aircraft Trajectory Prediction using LSTM Neural Network with Embedded Convolutional Layer. Annual Conference of the PHM Society, 11(1).
Abstract 424 | PDF Downloads 588



Trajectory Prediction, LSTM, Convolutional Layer

Technical Papers

Most read articles by the same author(s)