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ABSTRACT

Prognostics and Health Management of machine devices and
parts is a hot topic in the Industry 4.0 era. In this fashion,
automated procedures to evaluate machinery working condi-
tions are essential to minimize downtime and maintenance
costs. In this work, we study how to monitor the decrease
in performance of a paper sheet feeder for the packaging in-
dustry under heavy-duty cycle operations. The main measur-
able outcome of such degradation is the increase in backlash
among the device moving components. A wide variety of
methods and procedures is available to tackle this monitor-
ing problem. In this paper, we analyze the use of a simple
yet efficient diagnosis methodology that can exploit machin-
ery controllers (i.e., Programmable Logic Controllers) edge-
computing capabilities. Vibration measurements are known
in the literature to retain information about the system’s me-
chanics. Model-of Signals, a data-driven approach based on
black box system identification, allows to extract that infor-
mation reliably during machinery working cycle. The refine-
ment of those data using machine learning allows the retrieval
of knowledge about the health state of the machine. In this
study, the feeder mechanism is run to failure with its parts
backlash measured at given time intervals. Accelerometer
signals are modelled as AutoRegressive processes whose co-
efficients are then considered as features to feed to machine
learning algorithms, which are employed to perform sever-
ity evaluation of the ongoing degradation. Estimation and
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prediction are both implementable on-board the controller,
while the learning task can be carried out remotely, in a cloud
computing perspective. The exploitation of AutoRegressive
modelling gives a simple and inherent methodology for fea-
ture selection, serving as a foundation of the machine learning
stage. We make use of a Support Vector Machine algorithm
to analyze how obtained models represent the various levels
of backlash in the device and develop a suitable predictor of
the degradation severity. Finally, the results of the application
of the methodology to the case study are shown.

1. INTRODUCTION

Prognostics and Health Management (PHM) of machines, in
recent years, has become a determinant factor in the indus-
trial world, especially for firms adopting the main concepts
of Smart Factory and Intelligent Manufacturing. In this con-
text, autonomous diagnostics and prognostics of faults and
their precursors has gained remarkable attention. The field is
flourishing in academia, and researchers have published nu-
merous PHM methodologies for machinery components (Lee
et al., 2014; Atamuradov, Medjaher, Dersin, Lamoureux, &
Zerhouni, 2017; Vogl, Weiss, & Helu, 2019).

Autonomous health management is based on Condition Mon-
itoring (CM), which refers to tracking the equipment state
of health during operations. On top of that, it is possible
to build-up maintenance policies, such as Condition-Based
Maintenance (CMB) (Jardine, Lin, & Banjevic, 2006) and
Predictive Maintenance (PM) (Javed, Gouriveau, & Zerhouni,
2017). The former is usually triggered when a monitored de-
vice reaches a certain level of degradation, while the latter
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depends on the component predicted level of deterioration in
time. The typical course of actions adopted to execute those
servicing strategies involves:

1. Sensor data acquisition.
2. Data processing.
3. Maintenance decision making.

They denote the fact that the application of autonomous health
management procedures on machinery components requires
significant sensor measurements, suitable data processing al-
gorithms, and appropriate servicing choices. However, the
majority of the proposed PHM solutions do not take into ac-
count the standard hardware and software used in the indus-
try. Those procedures typically rely on non-industrial equip-
ment and software to produce useful information for servic-
ing.

On the other hand, the industrial world is starting to inte-
grate a large number of Information Technology solutions
to keep up with the previously depicted concepts, starting
from hardware. Modern machinery controllers are built based
on PCs and workstations hardware architectures, introducing
more computational power and resources in production lines.
Moreover, they now offer enhanced connectivity, allowing
improved interconnections within the automation pyramid.
This development enables the use of Industrial PCs as edge-
computing units, hence, their integration in autonomous health
management procedures. Firstly, real-time sensor data col-
lection through fieldbus is boosted to higher sampling fre-
quencies, up to 10 kHz, fulfilling the requirements of the ac-
quisition step. Secondly, additional CPU power enables lo-
cal data processing, providing the first refinement stage of
the collected information. Lastly, controllers can exploit in-
creased networking capacity to outsource the final elabora-
tions to production supervisor PCs, offering useful informa-
tion for maintenance decision-making.

In this scenario, it is crucial to choose a reasonable data pro-
cessing procedure to perform condition monitoring of the ma-
chinery components exploiting industrial PCs. In general,
PHM proposes methods that involve model-based (Isermann,
2005) and data-driven (Cerrada et al., 2018) solutions. Among
those, machinery controllers can host feasibly simple model-
based solutions as well as simple data-driven ones. In this
respect, we have chosen Model-of-Signals (MoS) (Isermann,
2006): A hybrid technique that makes use of black box sys-
tem identification (Söderström & Stoica, 1989; Ljung, 1999),
a well-established theory, to derive models from the system
measured signals. As shown in (Barbieri, 2017; Barbieri et
al., 2018), recursive identification algorithms implementation
suits Industrial PCs programming languages, even though they
are not meant for complex math operations. Such a technique
allows us to compress sensor data streams into models, re-
taining most of the original information content. Then, the in-
creased connectivity with higher-level computers permits the

integration and processing of this information through data-
driven approaches, such as Machine Learning (ML). The re-
sult is a two-level architecture producing PHM indications in
a distributed fashion.

This work is a follow-through of previous projects (Barbieri,
Diversi, & Tilli, 2019; Barbieri, Mambelli, Diversi, Tilli, &
Sartini, 2019). In this one we study the application of the
proposed two-level architecture to monitor the working con-
dition of a paper feeder mechanism using MoS and Support
Vector Machines (SVM). The system feeding quality is a con-
sequence of the increase in backlash between its parts. This
quantity degrades over time throughout working machine cy-
cles. During production, accelerometers measure system vi-
brations, and their related models’ generation is performed
using MoS. Vibrations can be represented as an AutoRegres-
sive (AR) process and the Recursive Least Squares (RLS) al-
gorithm can be used to estimate its parameters. Meanwhile,
mechanism backlash has been evaluated and recorded peri-
odically during production stops. Then, the collected models
have been labeled using the measured degradation level and
fed to an SVM classifier. In other projects (Barbieri, Diversi,
& Tilli, 2020), we use different underlying MoS structure, de-
pending on the source of the signal to model. In that particular
case, we model the current readings from the motor driving
an electric cam mechanism as an AutoRegressive MovingAv-
erage (ARMA) process.

In the remainder of the paper, section 2 is devoted to the pre-
sentation of our condition monitoring methodology and its
mathematical foundations. Then, section 3 describes its ap-
plication to the industrial case study with section 4 presenting
the obtained results. Finally, PHM considerations are drawn
on top of obtained results in section 5.

2. CONDITION MONITORING IN MACHINERY

The condition monitoring technique we use in this work ex-
ploits the standard, founding components of the automation
pyramid, allowing manufactures to employ expertise they al-
ready own to implement the required elaborations. In PC-
supervised production lines, the controllers have room for the
implementation of system identification algorithms. In their
suited form, they reduce the data load on the next comput-
ing level by compressing measurements streams into compact
pieces of information, i.e., model parameters. Then, Pro-
grammable Logic Controllers (PLCs) boosted connectivity
permits to send this polished data to supervising calculators,
outsourcing the final refinements through the use of SVM,
in this case, and finally, displaying the monitoring results for
maintenance decision-making. In this connected scenario, we
incorporate also a model distance metric in our PHM solu-
tion. Despite minor diagnostics capabilities with respect to
machine learning algorithms, it has the advantage of provid-
ing a locally computed indicator for fail safe policies. The
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combination of this generated information is useful for the
management level of the automation pyramid to drive a pos-
sible optimisation of the machinery maintenance strategies.

2.1. Model-of-Signals

The Model-of-Signals approach consists in assuming a math-
ematical model of the measured signal and estimating it from
the available data. This estimate is then used to extract in-
formation for fault diagnosis (Isermann, 2006). In this work,
the procedure relies upon signals sampled from accelerome-
ters placed on-board the machine. The measured signals are
assumed to be described by stochastic AutoRegressive pro-
cesses that are estimated by a system identification algorithm,
with the assumption that the machinery production process
generates the AR “driving” noise.

In detail, the signal y(t) coming from a sensor is assumed to
be generated by an AR model described by the equation

y(t) = −a1 y(t− 1)− . . .− an y(t− n) + e(t), (1)

where n is the model order and e(t) is the “driving” white
process. This model can be rewritten in the regression form

y(t) = ϕT (t) θ + e(t), (2)

where

ϕ(t) = [−y(t− 1) · · · − y(t− n) ]T , (3)

θ = [ a1 a2 · · · an ]T . (4)

The identification problem consists in estimating the param-
eter vector θ given a set of samples of y(t). This problem
can be solved by means of the Least Squares (LS) algorithm
(Ljung, 1999). However, the batch LS method is not suit-
able for PLC implementation since real-time controllers have
both memory and computational constraints. For this reason,
the Recursive Least Squares algorithm has been adopted, as
described in the next subsection.

2.2. Identification algorithm

The Recursive version of the LS algorithm that makes use
of the matrix inversion lemma (Ljung, 1999; Söderström &
Stoica, 1989) results in being the best choice. In fact, it is
possible to overcome computational constraints and part of
the memory constraints of the conventional LS formulation,
since the algorithm computations rely upon square matrices
whose maximum dimension is the model order n.

The RLS algorithm computes the model parameter estimate θ̂
recursively in time. More precisely, the estimate θ̂(t) at time
t, is obtained on the basis of the previous estimate θ̂(t − 1),
the current measurement sample y(t) and the last n sensor
measurements y(t−1), . . . , y(t−n). The algorithm is based

on the following equations (Ljung, 1999):

θ̂(t) = θ̂(t− 1) +K(t)ε(t), (5)

K(t) =
1

t
P (t)ϕ(t), (6)

ε(t) = y(t)− ϕT (t) θ̂(t− 1), (7)

P (t) =
t P (t− 1)

t− 1

[
In −

ϕ(t)ϕT (t)P (t− 1)

t− 1 + ϕT (t)P (t− 1)ϕ(t)

]
,

(8)

where In is the n× n identity matrix. Then, notice that RLS
has to be initialized by the quantities θ̂(t0) and P (t0) which
have to be either defined by on-board calculations or sent to
the machine. Those quantities are commonly computed in the
following way, by performing a “mini-batch” LS,

P (t0) =
( 1

t0

t0∑
k=1

ϕ(k)ϕT (k)
)−1

, (9)

θ̂(t0) = P (t0)
( 1

t0

t0∑
k=1

ϕ(k)y(k)
)
, (10)

with 0 ≤ t0 < t. When not possible, e.g., in the majority
of PLCs, they are initialised as P (t0) = αIn and θ̂(t0) = 1,
where α > 0 is a scalar and 1 is a n× 1 vector whose entries
are all equal to 1.

The derived algorithm formulation is now suitable for PLC
implementation and its on-line use during operations. As
showed in (Barbieri, 2017), the algorithm is numerically vali-
dated showing the same performances when evaluated within
MATLAB environment as well as on the machine controller.
In our proposition, the algorithm and its initialization are both
running on PLC programs. In this sense, depending on the
PLC computational power and its available features, it is ad-
visable to perform the condition monitoring program on a low
priority task with suitable cycle time in order to let it work
properly without affecting the main programs controlling the
machinery operations. For instance, in the case study we are
going to present, the MoS solution results optimal because of
its light computational load since the involved logic control
task is close to a 70% utilization factor.

2.3. Model Order Selection

The use of AR processes to represent the measured signals
requires to define a proper model order n, see equation (1).
Two criteria that are often used for model order selection are
the Final Prediction Error (FPE) and the Minimum Descrip-
tion Length (MDL). They are based on the statistical prop-
erties of the residual of the LS identification. Consider an
AR model of order n and the associated parameter vector θ̂n
identified by applying the RLS method to a set ofN measure-
ments y(1), y(2), . . . , y(N). FPE and MDL are criteria with
complexity terms that consist in selecting the order n leading
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to the minimum of the following loss functions (Söderström
& Stoica, 1989; Ljung, 1999):

FPE(n) =
N + n

N − n
J(θ̂n), (11)

MDL(n) = N log(J(θ̂n)) + n logN, (12)

where

J(θ̂n) =
1

N

N∑
i=1

ε2(t, θ̂n), (13)

and ε(t, θ̂n) = y(t)− ϕT (t) θ̂n is the residual (prediction er-
ror) of the LS identification. In this work, the choice of the
order n is performed by combining the FPE and MDL criteria
with the whiteness hypothesis test applied to the residual se-
quence ε(1, θ̂n), . . . , ε(N, θ̂n). The whiteness test, which is
often used for model validation (Söderström & Stoica, 1989;
Ljung, 1999), is based on the following variable:

ξN,m = N
r̂m

T

ε r̂mε

J(θ̂n)2
, (14)

where

r̂mε =
1

N

N∑
i=1

 ε(t− 1, θ̂n)
...

ε(t−m, θ̂n)

 ε(t, θ̂n). (15)

More precisely, it possible to prove that ξN,M is asymptoti-
cally chi-square distributed with m degrees of freedom:

ξN,m
dist−→

N→∞
χ2(m). (16)

2.4. Distance Metrics

In this paper, we make use of the symmetric Itakura-Saito
(IS) spectral distance (Wei & Gibson, 2000) to introduce a
local metric for fault detection. The IS distance is a measure
of how close to each other are the spectra of the estimated
model and of the reference one. Since it compresses models
information into a scalar it is not as reliable as SVM for fault
severity isolation, but it is relevant for the definition of fail-
safe policies within the machinery controller. The scenarios
it allows to tackle, typically, are the loss of connection with
the supervisor and unexpected degradation in the system. Its
formulation is the following:

IS =
1

2Nf

Nf∑
k=1

(
Sref (fk)

Ŝ(fk)
− log

Sref (fk)

Ŝ(fk)
+

+
Ŝ(fk)

Sref (fk)
− log

Ŝ(fk)

Sref (fk)
− 2

)
,

(17)

where Sref (fk) denotes the Power Spectral Density (PSD) of
the reference AR model θref , Ŝ(fk) is the PSD of the current

estimated AR model θ̂ and Nf is the number of considered
frequencies, i.e., the PSD resolution.

2.5. Support Vector Machines

Modelling signals as AR processes leads to a considerable
reduction of the acquired data size, while the most relevant
spectral content is captured. Therefore it is possible to use AR
techniques as a feature selection method for machine learn-
ing algorithms, reducing both training and inference time and
improving prediction accuracy. Given the collected dataset in
the case study, we train a linear SVM (Vapnik, 1995; Cortes
& Vapnik, 1995; Bishop, 2006) on the obtained models to
predict the relative degradation level. The choice of this tech-
nique depends on how we were able to link the levels to
the run to failure models in the dataset of the proposed case
study. The evaluation of the play in the mechanism is a time-
consuming process that only the machinery technician was
allowed to perform, resulting in very few measurements with
respect to the extracted AR features. In this fashion, we used
as ML algorithm a classifier, and not a regressor to perform
predictions.

Given a set of observations {xi}i=1,...,N , xi ∈ Rn, and the
relative labels {yi}i=1,...,N , with yi ∈ {−1, 1} without loss
of generality, we consider separation hyperplanes of the form

f(x) = wT · x+ b = 0, (18)

where the weights w ∈ Rn and the bias b ∈ R are the hy-
perplane parameters. A linear SVM is a binary classifier that
aims to find the hyperplane that maximises the margin be-
tween the two classes. Hence, its goal is to determine the
hyperplane parameters that maximises the distance from the
support vectors of the two classes, i.e., from the observations
nearest to the separation hyperplane. It results that

w =
∑

xi∈SV

λiyixi, (19)

b =
1

|M |
∑

xi∈M

yi − ∑
xj∈SV

λjyjx
T
i xj

, (20)

where λ =
(
λ1 . . . λN

)
∈ RN

≥0 are Lagrangian multipliers,
SV is the set of support vectors and M is the set of support
vectors whose corresponding λi are lower than the regular-
ization parameter that penalises classification errors in case
of non-separable classes.

In the proposed case study we have to deal with a classifi-
cation problem with k > 2 classes, thus we adopt the one-
versus-one approach, which is known to be robust with re-
spect to this learning task (Bishop, 2006). It consists in train-
ing K(K−1)

2 binary SVMs on all the possible pair of classes
and classifying the observations as belonging to the class that
presents the higher number of assignments.
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3. INDUSTRIAL CASE STUDY

The machinery under test in this study is an industrial paper
feeder. It is a working group within a production line that in-
volves paper sheet insertion in several packaging typologies.
The device is subject to heavy-duty cycle operations, up to
30 000 cycles per hour and we kept this maximum value con-
stant during our testing. One electric motor drives the whole
mechanism. A system of gears, cams, belts and pulleys trans-
mits the wanted synchronized motion to the end effectors,
i.e., a combination of pliers and suction caps extracting pa-
per sheets from a vertical stack. Even though the feeder is
designed to work in high-performance conditions, its parts
suffer from wearing over time. It causes the increase in play
between its moving elements resulting in paper feeding qual-
ity degradation. We monitor such production deterioration
by measuring device frame vibrations using two accelerom-
eters, with an Industrial PC handling their acquisition and
processing. Accelerometers are installed on the crank of the
slider-crank mechanism that drives the pliers, oriented along
the connecting rod, and on the shaft that releases the single
paper sheets, oriented in the same direction of the motion of
the vertical stack support, respectively. We cannot provide
pictures of the mechanism because of the confidential nature
of the project. Nevertheless, the firm we collaborate with has
allowed us to share the obtained condition monitoring results.

3.1. Data Acquisition

The equipment used in this project reflects the considera-
tions we introduced about the use of industrial PCs as edge-
computing units. It consists of:

• C6920-0030: Beckhoff Industrial PC, with CPU Core2
Duo 2.53 GHz and RAM of 1 GB.

• Two PCB 353B03, i.e., monoaxial, piezoeletric, 500 g
accelerometers with a measuring bandwidth of 1-7000
Hz and output signal of ±5 V, that are acquired with one
EL3632 module, which supports a maximum sampling
frequency of 50 kHz. The accelerometers are labeled
Acc1 and Acc2.

Components connection scheme is depicted in Figure 1. The
PLC is responsible for the collection and the conditioning
of sensor measurements. Controller and fieldbus main cy-
cle times are synchronized and set to 1 ms, while the module

C6920-0030: Beckhoff Industrial PC

EK1100: EtherCAT coupler

EL3632: IEPE analog input module

353B03: Piezoelectric

accelerometer 1

353B03: Piezoelectric

accelerometer 2

Figure 1. Components connection scheme.

Cycles Backlash
[mm]

1 268 642 0.650
2 081 215 0.700
2 336 280 0.925
3 044 592 1.100
3 754 981 1.200
4 463 972 1.375
5 159 990 2.075
5 940 476 2.200
7 064 995 2.625
8 264 164 3.150
9 213 769 3.500

10 153 300 3.900

Table 1. Pliers backlash measurements with corresponding
number of machine cycles reached at time of recording.
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Figure 2. Plot of pliers backlash against the number of ma-
chine cycles reached at time of recording. The red lines indi-
cate the time in cycles at which the measurement was taken.

sampling frequencies are configured to oversample at 5 kHz.
Hence, at each cycle time, the controller receives 5 samples
from each acquired sensor. The acquisition program groups
accelerometer data into arrays with 18 420 entries resulting in
30 operating cycles.

We carried out this study by performing a run-to-failure test
of the machine, stopping operations at given time instants to
record the backlash level between parts, as shown in Table 1
and Figure 2. Despite the higher wearing registered between
4 and 5 million cycles, the degradation seems to increase con-
stantly as time passes. The life span of such device is typi-
cally rated for about 10 000 000 total cycles, according to the
vendor. In our testing, according to the feeder technician,
we reached the highest possible level of play before the per-
formance degradation was unsustainable, feeding a random
number of sheets of paper and not one at a time. In practice,
the definition of the non-return level of play depends on the
customer and, in particular, on the machine mounted down-
stream the feeding group and the feeding quality and preci-
sion it requires.

3.2. Data processing

The data processing stage makes use of the PLC as an edge-
computing unit and its supervisor as a remote-computing one.
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Figure 3. Model parameters evolution in time. Only the first 7 parameters of θ̂ are shown. Red lines separate the different
working phases. The top, middle and bottom horizontal axes display the backlash level, the working phase duration and
number of machine cycles reached, respectively.

The controller is responsible for the first information refine-
ment, using the RLS algorithm to estimate the models of the
buffered signals. The main hyperparameter to set is the model
order. In this application, n = 20 is the result of the appli-
cation of MDL and FPE on a sample signal measured dur-
ing nominal working conditions with PLC available resources
taken into account. Alongside this definition, the controller
estimates the IS distance reference model. While perform-
ing the test, the industrial PC logs the estimated Acc1 and
Acc2 models, together with the corresponding IS distance
from the respective references and sends those value to the
supervising computer using the MQTT communication pro-
tocol. Besides, the current backlash measure is recorded, with
the operator doing this operation via Human-Machine Inter-
face (HMI) every time the machine is stopped.

Once the test and data collection is over, the supervising PC,
running MATLAB in this case, performs the machine learn-
ing task, providing the results that we will analyze in the next
section. The adopted SVM algorithm exploits a linear ker-
nel and penalises classification errors with a regularization
parameter of 1. SVM labels data according to the recorded
backlashes, which are however available only in correspon-
dence of machine stops. Therefore, when the operator inserts
a backlash value in the HMI, it labels all the data processed
between the previous and the actual machine stop. It results
in a 12-classes data partition. The algorithm partitions data

with the same proportions within each class, by picking ran-
domly 70 per cent of data for the training phase, 0 per cent
for validation and 30 per cent for the test stage. Due to the
high cost of such tests, the firm allowed us to record only one
run to failure of the machine, so we had to train and test using
this unique run only.

4. MONITORING RESULTS

Here we present the results obtained by using the method-
ology proposed in section 2 and applied in section 3. Ini-
tially, we analyze the data collected and processed on-board
the PLC. Figure 3 presents the first 7 parameters of the signal
models computed for both Acc1 and Acc2 during the run-to-
failure test. Top, middle and bottom horizontal axes show the
backlash level, the time duration and the number of cycles
reached for each working period, respectively. Even if for
the sake of clarity and space we do not show all of them, the
graphs allow already a qualitative recognition of the differ-
ent degradation stages of the mechanism. This suggests that
the use of models as features for the automatic generation of
PHM indicators is practicable for this condition monitoring
solution.

To this extent, we provide also the data relative to IS distance
measurement obtained throughout the testing in Figure 4. It
shows that a scalar quantity, computed locally, can provide
insight into the system state of health. It has an increasing
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Figure 4. Itakura-Saito distance evolution in time. Red lines separate the different working phases. The top, middle and bottom
horizontal axes display the backlash level, the working phase duration and number of machine cycles reached, respectively.

Figure 5. LDA (left) and PCA (right) of the features of the test set, with prediction coloured depending on the assigned class
and accuracy displayed in the top left corner.
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Figure 6. Label prediction in time. Red lines separate the different working phases. The top, middle and bottom horizontal
axes display the backlash level, the working phase duration and number of machine cycles reached, respectively.

Predicted labels [mm]
0.650 0.700 0.925 1.100 1.200 1.375 2.075 2.200 2.625 3.150 3.500 3.900

A
ct

ua
ll

ab
el

s[
m

m
]

0.650 28 244 0 0 0 0 0 0 0 0 0 0 0
0.700 0 39 789 18 705 21 22 9 0 0 0 0 0
0.925 0 37 12 350 330 0 0 0 0 0 0 0 0
1.100 2 1 122 203 33 690 178 113 76 5 0 0 0 0
1.200 0 15 0 274 11 764 467 203 1 0 0 0 0
1.375 0 13 1 249 268 30 363 4 521 2 0 0 0 0
2.075 0 29 0 73 282 4 825 29 346 207 0 0 0 0
2.200 0 0 0 0 0 0 306 38 651 6 0 0 0
2.625 0 0 0 0 0 0 0 33 56 124 0 0 0
3.150 0 0 0 0 0 0 0 0 0 59 808 96 0
3.500 0 0 0 0 0 0 0 0 0 261 47 121 8
3.900 0 0 0 0 0 0 0 0 0 0 18 42 447

Table 2. Confusion matrix of Acc1 test data. Each row contains the total number of models belonging to the relative class
distributed in each column according to the predicted label.

Predicted labels [mm]
0.650 0.700 0.925 1.100 1.200 1.375 2.075 2.200 2.625 3.150 3.500 3.900

A
ct

ua
ll

ab
el

s[
m

m
]

0.650 28 244 0 0 0 0 0 0 0 0 0 0 0
0.700 0 40 412 111 3 0 29 9 0 0 0 0 0
0.925 0 168 12 520 10 2 7 10 0 0 0 0 0
1.100 0 6 13 35 308 28 10 23 1 0 0 0 0
1.200 0 0 3 13 12 407 126 173 2 0 0 0 0
1.375 0 2 4 34 75 31 973 3 300 29 0 0 0 0
2.075 2 14 11 55 151 3 126 31 232 171 0 0 0 0
2.200 0 0 0 0 6 13 253 38 011 680 0 0 0
2.625 0 0 0 0 0 0 0 672 55 485 0 0 0
3.150 0 0 0 0 0 0 0 0 1 59 458 440 5
3.500 0 0 0 0 0 0 0 1 0 951 46 422 16
3.900 0 0 0 0 0 0 0 0 0 8 44 42 413

Table 3. Confusion matrix of Acc2 test data. Each row contains the total number of models belonging to the relative class
distributed in each column according to the predicted label.
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trend, similar to the backlash one. The IS indicator turns out
to be useful for implementing fault detection policies, with
thresholds applied to its level. However, it does not permit a
clear diagnosis of the severity of the degradation. The same
distance value corresponds to several backlash amounts, par-
ticularly in the early stages of mechanism deterioration. In
this case, a suitable threshold for fault detection may be de-
fined at around a level of 5 for Acc1 and 1 for Acc2.

Figure 5 and 6 depicts the results of the application of the
SVM algorithm to predict labels of the models’ test set for
Acc1 (left) and Acc2 (right). In particular, Figure 5 shows
the projection of that feature set using Linear Discriminant
Analysis (LDA) and Principal Component Analysis (PCA),
on the left and right side, respectively. Points color corre-
sponds to the predicted labels assigned by the algorithm, with
the achieved classification accuracy displayed in the top left
corner of each plot. A value of 3.4% for Acc1 and 2.4% for
Acc2 indicates positive results for PHM. Moreover, despite
being point projections, it is possible to observe the path that
features follow while the machine is degrading. On the other
hand, Figure 6 outlines predicted labels against the actual
ones, revealing an almost complete stairstep graph. There,
it is possible to observe that the SVM predictor mostly strug-
gles with backlash levels 1.375 mm and 2.075 mm when giv-
ing inaccurate outcomes, and notice that most of the miss-
predictions are around the class dividing line. Moreover, this
can also be observed in the behaviour of the IS distance in
Figure 4, where the index holds the same value for both the
said classes. In this respect, we also provide the resulting
confusion matrices in tables 2 and 3 for Acc1 and Acc2, re-
spectively. Each row represents the test set of a single class,
subdivided into the columns according to the predicted labels.
Numbers in table rows sum up to the total models amount of
the relative test set.

The SVM classifier results able to predict accurately the var-
ious degrees of wearing in the mechanism and the use of the
two-level monitoring architecture is capable of providing in-
formation for predictive maintenance decision making. On
the other hand, the IS distance results to be a valuable indica-
tor for fault detection: Its computation on the controller does
not require data exchange with external computers. However,
it is advisable for the definition of preventive maintenance
policies and not of predictive maintenance strategies.

5. CONCLUSION

In this paper, we studied the application of a PHM procedure
that relies on the use of standard manufacturing computing
solutions for its implementation, by analyzing its impact on
a real-world case study, i.e., an industrial paper feeder. We
achieve condition monitoring of its main mechanism back-
lash level with a distributed architecture. The PLC acts as an
edge-computing unit and refines sensor measurements by ex-

ploiting the Model-of-Signal technique. Then, it sends them
to a remote PC to outsource the final elaborations. The su-
pervisor collects the received models and labels them with
the backlash level recorded by the operator. At this point, the
computer trains an SVM predictor and tests its classification
accuracy. The reported results show that such predictor is a
reliable solution for the generation of PHM indications. The
management can use this information for the optimization of
machinery components maintenance decisions. In this case,
they can plan the servicing to bring the backlash level to nor-
mal.
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