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ABSTRACT

Maintenance costs of industrial systems often exceed the ini-
tial investment cost. Predictive maintenance, which analyzes
the health of the system and suggests maintenance planning,
is one of the strategies implemented to reduce maintenance
costs. Health status and life estimation of the machinery are
the most researched topics in this context. In this paper, we
present our analysis for Fifth European Conference of the
Prognostics and Health Management Society 2020 Data Chal-
lenge, which introduces an experimental filtration system for
different experiment setups, and asks for remaining useful
life predictions. We compared random forest, gradient boost-
ing, and Gaussian process regression algorithms to predict
the useful life of the experimental system. With the help of
a new fault-based piecewise linear RUL assignment strategy,
our gradient boosting based solution has been ranked 3rd in
the data challenge.

1. INTRODUCTION

Maintenance costs of industrial systems often exceed the ini-
tial investment cost. Technical advances in Industry 4.0 en-
ables us to predict future state/behavior of the industrial sys-
tem by collecting and analyzing operational data, and to de-
cide accordingly. With that respect, predictive maintenance,
which analyzes the health of the system and suggests main-
tenance planning, is one of the strategies implemented to re-
duce maintenance costs. Since access to data is easier than
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before, health status and life estimation of the machinery are
the most researched topics in this context (Tsui, Chen, Zhou,
Hai, & Wang, 2015). In view of the high impact and extreme
costs usually associated with maintenance tasks, studies have
been carried out to predict failures and reduce overall effects.
However, it is necessary to determine maintenance decisions
at the right time with a prognostics information. The vast ma-
jority of these studies focuses on the estimating the remaining
useful life (Nguyen & Medjaher, 2019).

By enabling widespread integration of diagnostics and prog-
nostics into modern production systems, uncertainties asso-
ciated with life cycle of system have reduced. Prognostics
and health management (PHM) is performed with varying de-
grees of success for a number of different reasons. There are
currently no standards to demonstrate best practices compar-
atively because each problem can be solved in a variety of
ways. The PHM Data Challenge, an open data competition
specialized in PHM, is an opportunity to competitively deter-
mine leading solutions for industrial problems. PHM Data
Challenge, an open data competition specialized in PHM, in-
cludes diverse issues in industrial data analytics and thus pro-
vides abundant resource for study and appropriate approach
development. The data in the competitions cover a wide spec-
trum of real-world industrial problems. The proposed issues
and winning algorithms each year serve as a diverse library
of case studies from which we can learn about the current
challenges in practice, the thinking flow of addressing these
challenges, and the advantages and disadvantages of different
methods (Huang, Di, Jin, & Lee, 2017).

In this paper, we present our analysis for Fifth European Con-
ference of the Prognostics and Health Management Society
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2020 Data Challenge (PHME20 Challenge) (Giordano & Ga-
gar, 2020). The challenge proposes degradation of an exper-
imental filtration system for different experiment setups, and
asks for useful life predictions. Through a data pipeline, we
compared random forest (RF), gradient boosting (GB), and
Gaussian process (GP) regression algorithms to estimate the
useful life of the experimental system.

This analysis paper is organized as follows: Section 2 de-
scribes remaining useful life of a system, and gives infor-
mation about the challenge dataset and other public datasets
which we considered relevant to this challenge. Section 3
describes how we attacked the Data Challenge, and the work-
flow we used for analysis. Section 4 describes our implemen-
tation and results that we had for the Data Challenge.

2. REMAINING USEFUL LIFE PREDICTION AND
PHME20 DATA CHALLENGE

The remaining useful life (RUL) of a system is defined as the
time left from the current time to the end of the systems’s
useful life. The major task of RUL prediction is to forecast
the time left before the system losses its operation ability,
based on the condition monitoring information. There are
two major issues/research areas related to the remaining use-
ful life prediction: predicting the remaining useful life based
on the condition monitoring information and measuring the
prediction accuracy of different approaches (Lei et al., 2018).
PHME20 data challenge competitors are challenged to show-
case their abilities on an experimental filtration system’s con-
dition monitoring data.

Filtration systems are used in several engineering processes
including automotive, chemical, nuclear reactor, and process
engineering applications. Besides, several industrial applica-
tions such as food, petroleum, pharmaceuticals, metal pro-
duction, and minerals embrace filtration process
(Sparks, 2012). The aim of the filtration systems is to keep
the rest of the system running smoothly, thus they play a vi-
tal role in maintaining the process operating (Skaf, Eker, &
Jennions, 2015).

Filtration systems are subject to clogging because of the con-
tamination in the liquids. PHME20 dataset explores this fact
through an experimental rig that has been constructed to sim-
ulate filter clogging failure with different contamination de-
grees. The rig contains liquid tanks, stirrer, pump, pulsa-
tion dampener, filter, pressure and flow rate sensors, and data
acquisition system, as shown if Figure 1. The suspension
contains polyetheretherketone particles and water in differ-
ent concentrations. Particles have three possible sizes: small
(45− 53µm), medium (53− 63µm), and large (63− 75µm).
The dataset contains sensor readings of the experiments for
different particle sizes and concentrations, acquired at 10 Hz.
The filtration system is said to be clogged when the pressure
drop (Upstream Pressure −Downstream Pressure) is

Figure 1. The experimental rig for the PHME20 Data Chal-
lenge

higher than 20psi.

Data Challenge’s public dataset contains experiments divided
into training and validation subsets. A private test subset is
allocated for evaluations of the challenge submissions. Con-
centration is given by Solid Ratio, and particle size is given
by Particle Size in experiment metadata. A Profile is as-
signed to each combination of concentration and particle size
in the dataset. We consider these metadata as operating con-
ditions of the experiments. Training and validation subsets
contain 32 experiments in total. The aim of the PHME20
Data Challenge is to predict RUL for training, validation and
test datasets for each 10 seconds intervals.

Similar to the current data challenge, PHM08 Data Challenge
(Saxena & Goebel, 2008) also aims for RUL prediction. It’s
sibling, NASA Turbofan Engine Degradation Simulation Da-
taset (CMAPSS dataset) (Saxena & Simon, 2008) is one of
the most analyzed dataset in predictive maintenance
researchers. Both PHM08 and CMAPSS dataset are com-
posed of multiple run-to-failure data of turbofan engines sim-
ulated using CMAPSS simulation software. We have ana-
lyzed CMAPSS dataset using various algorithm, including
deep learning architectures, gradient boosting and Gaussian
process, and found out that Gaussian process with piecewise
linear rule assignment produced better results. We find vari-
ous similarities between CMAPSS dataset and
PHME20 Data Challenge, and that is what we want to explore
for more.

Another well-known dataset for RUL estimation is a battery
dataset, (Saha & Goebel, 2007). Battery capacity estimation,
and accurate prognostics is an important component of a bat-
tery management system. Capacity of lithium-ion batteries
are affected not only by the cycle count but also by the en-
vironmental conditions the battery is operating. Richardson
et al. in (Richardson, Osborne, & Howey, 2017) use Gaus-
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sian process regression to predict cycle capacities, and re-
maining useful life for lithium-ion batteries. Richardson et
al. shows that Gaussian process proves useful when there is
limited amount of data samples that are coming from dynamic
environmental conditions, such as a battery pack.

3. METHODS AND TECHNIQUES

We have built a data processing workflow using Jupyter Note-
book (Kluyver et al., 2016) to attack the Data Challenge. The
workflow contains data preprocessing, model training, and
evaluation phases as shown in Figure 2.

3.1. Data Preprocessing

We have executed preprocessing steps such as initial RUL as-
signment, operating conditions (profile) assignment, scaling
etc. before the training phase.

Data Merging: The dataset contains individual data files for
each experiment. We merged individual data files to have two
separate datasets for training and validation. We have added
experiment setups for each sample of reading for further pro-
cessing. The merged training and validation subsets have
ExperimentID, ReadingID, Time, three experiment se-
tups, readings from three sensors, and Pressure Drop.

RUL Assignment: RUL assignment is the process of assign-
ing RUL labels to the samples in the dataset. The datasets
does not contain any ground truth RULs for the experiments.
Since we knew that the experiments are run-to-failure, we
could assign RULs for each sample.

The most common RUL assignment strategies are Linear RUL
Assigment, and Piecewise RUL Assignment. Linear RUL As-
signment suggests that the maximum of the RUL values is
the length of the sequence of the sensor readings. RUL value
drops by one with every reading, and finally reaches to zero
at the end. The sensor readings does not end with clogging
failure, so we have assigned negative RULs also. Piecewise
Linear RUL Assignment (PwL) suggests that RUL is constant
until a degradation in the experiment, and that the RUL starts
to decrease with the fault (Heimes, 2008). We experimented
with initial RUL values of 100, 125, and 150.

For the challenge, we have also developed a new RUL as-
signment strategy. In this strategy we sought for the faulty
timestamp using the following heuristic: we have observed
that Flow Rate is constant with some added noise, so we
tried to capture the timestamp where this behavior changes.
Using the Flow Rate values between timestamps 400 and
1400, we estimated a line for this nominal behavior, and cal-
culated the intersection of the Flow Rate and the line at the
furthest timestamp, which is assumed to be the start of the
degradation. This is demonstrated in Figure 3. We used lin-
ear RUL model before (initial RUL to fault) and after (fault
to experiment end) that intersection point. We named this

assignment strategy as RUL Fault. A visualization RUL
assignment strategies is shown in Figure 4.

Operational Conditions Assignment: The training and val-
idation subsets has Profile to describe the experiment se-
tups. Since these subsets have disjoint profiles, we needed
to build our schema for operation condition assignment. We
used K-Means clustering algorithm with Solid Ratio and
Particle Size features to assign operational conditions
(Kmeans Profile) for each sample.

Scaling: Data normalization is performed on each
KMeans Profile using StandardScaler from Scikit-Learn
Library (Pedregosa et al., 2011). Initially training data is
scaled, and then the scaling parameters are applied to vali-
dation data.

Feature Selection: We used the following features through-
out out experiments: Flow Rate, Upstream Pressure,
Downstream Pressure, Pressure Drop,
Particle Size, Solid Ratio, and Kmeans Profile.

Resampling: The runtime performance of GP is O(n3),
where n is the number of samples in the dataset. In order to
achieve reasonable training times, we resampled the 10 Hz
input data to d Hz, where d ∈ {1, 0.5, 0.33, 0.25, 0.2}, using
5/d strides. Initial results showed that d = 0.2 Hz gives
reasonable training times. Resampling is used for GP only.

Windowing: We have used window sizes of 5, 10, 15, 20,
25, 30, 40, and 50 to create a context on the time series data.
Windowed dataset have passed to model training phase.

3.2. Data Modeling

We have used RF, GB, and GP regression algorithms to esti-
mate the useful life of the experimental filtration system.

Random Forest: RF is an ensemble learning method for
classification, regression and other tasks that operate by con-
structing a multitude of decision trees at training time. RF
is a nonlinear modeling tool and overcomes low accuracy of
single decision-tree and overfitting (Breiman, 2001). Tuning
the hyperparameters can often increase generalization perfor-
mance. Depending on the implementation tree size can be
controlled using hyperparameters such as maximum depth,
maximum number of nodes, and minimum number of points
per leaf node. RF method is very suitable for solving failure
problems when priori knowledge is unclear, there is incom-
plete data. We have used RF implementation in Scikit-Learn
library (Pedregosa et al., 2011).

Gradient Boosting: GB, one of the most powerful techniques
for performing classification and regression tasks, builds the
model in a stage-wise fashion like other boosting methods do,
and it generalizes them by allowing optimization of an arbi-
trary differentiable loss function (Friedman, 2001). GB is an
ensemble learner: a final model based on a collection of indi-
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Figure 2. Data Processing Workflow

Figure 3. Fault Estimation for PwL Fault RUL Assignment

vidual models. The predictive power of these individual mod-
els is weak and prone to over-fitting but combining many such
weak models in an ensemble will lead to an overall much im-
proved result. We have used CatBoost (CB) (Prokhorenkova,
Gusev, Vorobev, Dorogush, & Gulin, 2017) implementation
in our research.

Gaussian Process: A GP is a probability distribution over
possible functions (Rasmussen & Williams, 2005). GPs are a
generic supervised learning method designed to solve regres-
sion and probabilistic classification problems. Their greatest
practical advantage is that they can give a reliable estimate
of their own uncertainty. GP extend multivariate Gaussian
distribution to infinite dimensionality. The key idea of GP is
to model the underlying distribution training data as a mul-
tivariate normal distribution. Learning a distribution enables
the model to output a prediction and an uncertainty associ-
ated with the prediction. We have used GP implementation in
Scikit-Learn library (Pedregosa et al., 2011).

Figure 4. Linear, PwL, and PwL Fault RUL Assignment
Strategies

3.3. Evaluation

We have used and reported mean absolute error (MAE) in
our experiments. The submissions to the data challenge have
been evaluated using the challenge specific penalty scores:

Penalty(TV ) =
∑

MAE(Mi(TV ))

Penalty(TE) =
∑

MAE(Mi(TE))

PenaltyScore = 1.5× Penalty(TE) + Penalty(TV )

(1)

where

• Mi = Model generated with i% of the training data,
i ∈ {25, 50, 75, 100}

• TV = Training + Validation datasets

• TE = Test dataset
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Table 1. Model Parameters

Algorithm Model Parameters

RF
max features: ’auto’, n estimators: 100,
bootstrap: True, max depth: 10,
min samples leaf: 2, min samples split:2

CB learning rate: 0.03, iterations: 1000

GP Kernel: Rational Quadratic
length scale: 1.0, alpha: 0.1

Table 2. MAE Scores Using 25% of the Training Data
(Best result is given in bold.)

Window Size
10 15 20 30 50

R
F

Linear 8.65 7.79 8.43 8.39 8.72
PwL 5.98 6.46 6.07 6.06 6.48
PwL Fault 4.89 4.99 5.08 4.71 4.76

C
B

Linear 8.27 7.82 7.17 7.01 8.14
PwL 5.12 4.92 4.92 4.80 5.08
PwL Fault 4.63 4.05 3.96 3.76 3.79

G
P

Linear 12.42 12.20 14.18 13.73 7.11
PwL 11.01 9.69 9.38 5.88 2.19
PwL Fault 7.14 6.56 7.25 6.98 3.75

4. EXPERIMENTS AND RESULTS

4.1. Model Training

After data preprocessing we trained our data models with the
transformed data. We used model parameters that are given
in Table 1. These values for RF were obtained through a grid
search procedure while the rest were default values provided
by the implementations.

4.2. Results and Discussion

PHME20 Data Challenge asks four models depending on the
percentage of the data that is used for training purposes. We
have used training and validations subsets separately, so for
our analysis we have used the required percentage of the train-
ing experiments only. We have reported MAE scores for each
case. During the experimentation we have seen that MAE
score drops when initial RUL for PwL drops. So we make a
decision and only reported PwL for initial RUL 150. Results
are shown in Tables 2-5.

Interestingly, when there was more training data, CatBoost
learned at smaller window sizes, i.e. best scores were achieved
for window size 15 rather than 30 as in previous experiments.
On the other hand GP achieved best results for window size
50 in all cases. Although GP achieve better, we were unable
to submit GP models for the challenge. The data challenge
strictly forbids submissions that are greater than 6 MBs. Size
of the RF model increases with number of trees in the en-
semble, the depth of these trees. Our experiments showed

Table 3. MAE Scores Using 50% of the Training Data

Window Size
10 15 20 30 50

R
F

Linear 7.81 7.07 7.97 8.10 8.12
PwL 4.94 5.41 4.66 5.21 5.23
PwL Fault 4.21 4.37 4.36 4.30 4.30

C
B

Linear 9.04 8.06 8.02 7.74 7.68
PwL 4.64 4.63 4.61 4.47 4.54
PwL Fault 4.53 4.31 3.87 3.99 3.95

G
P

Linear 10.75 9.71 9.28 8.94 6.08
PwL 7.87 6.95 5.91 3.64 1.66
PwL Fault 5.77 5.54 5.14 4.29 2.96

Table 4. MAE Scores Using 75% of the Training Data

Window Size
10 15 20 30 50

R
F

Linear 6.97 6.94 8.59 7.81 6.95
PwL 4.56 4.63 6.16 5.20 4.86
PwL Fault 4.25 4.19 5.53 4.64 3.98

C
B

Linear 8.72 7.61 9.31 8.63 8.79
PwL 4.87 4.62 6.12 4.95 5.66
PwL Fault 4.41 4.45 5.48 4.74 4.56

G
P

Linear 9.39 8.58 8.38 7.58 5.17
PwL 6.61 5.35 4.68 2.76 1.02
PwL Fault 4.35 4.13 3.89 3.23 2.18

that four RF models are as big as 28 MBs. MAE scores for
smaller models were upto 3x worse than that is reported here.
Scikit-Learn implementation of GP stores training samples
and covariance matrix in the model. So the size of the GP
models increases with number of samples in the dataset. Al-
though we used resampling of the dataset, four GP models
are 14.3 MBs in total. CB models are about 1 MBs each, so
we were able to submit our CB models.

Submissions to the data challenge are evaluated using public
training and validation datasets, and a private test dataset. Our
CB models, which ranked 3rd in the data challenge, scored
86.74 using the challenge’s penalty score.

5. CONCLUSION

We presented our analysis for PHME20 Data Challenge,
which asks for prediction of RUL of an experimental filtra-
tion system for different experiment setups. We built a data
pipeline, and compared random forest (RF), gradient boost-
ing (CatBoost), and Gaussian process regression (GP) algo-
rithms.
Gaussian process regressor predicted better than other algo-
rithms in all experiments. A new heuristic-based RUL assign-
ment strategy (PwL Fault) is introduced. PwL Fault achieves
better than Linear RUL assignment (Linear) in all cases.
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Table 5. MAE Scores Using all the Training Data

Window Size
10 15 20 30 50

R
F

Linear 7.45 7.12 8.07 7.52 7.38
PwL 4.57 4.72 5.43 5.29 4.85
PwL Fault 4.52 4.22 4.88 4.39 4.20

C
B

Linear 9.18 8.37 9.01 8.51 8.90
PwL 4.79 4.62 5.55 4.69 5.53
PwL Fault 4.61 4.36 5.26 4.62 4.34

G
P

Linear 9.32 9.07 8.56 8.00 5.77
PwL 6.05 5.62 4.70 2.79 1.00
PwL Fault 4.30 3.86 3.72 3.12 2.10

PwL Fault performs better then piecewise linear version
(PwL) for RF and CatBoost, but not for GP. CatBoost results
shows that while training data size increases the optimal win-
dows size decreases. While performing the best, GP does not
yield the smallest model which prevented us from submitting
our best model but the model using CatBoost which carried
us to the 3rd place in the challenge.
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