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ABSTRACT 

In recent years, considerable research has been carried out to 

improve the safety of the railways. Much of the research has 

been in the area of development of sensors to capture health 

of the railway equipment. So far, no comprehensive review 

of literature has been carried out for condition monitoring of 

the railways. Most of the accidents in the railways are due to 

wheel and bearing failures, which cause derailment of the 

train. The present paper gives a comprehensive review of the 

sensors available for assessing the health of these 

components. Wayside sensing technology is found to be 

more popular compared to the on-board sensing technology 

because of economic modeling of damage. Comparative 

analyses of various sensing technologies have been 

performed to understand their usefulness for estimation of a 

particular fault. The paper also summarizes different 

diagnostic tools used for fault identification of the component 

such as wheel and bearing. Case studies are included to show 

the usefulness of condition monitoring technologies for fault 

identification in railways. 

1. INTRODUCTION 

Railway is the largest man made transportation networks in 

the world and plays a vital role in driving economic growth 

of any country. With time rail transport in terms of passenger 

and freight is getting busier. Previously reported accidents 

show that the safety on the railway is still a matter of serious 

concern. According to the report of Ministry of Railways, 

Government of India (2012), in 2011, the derailment of Kalka 

mail caused the death of 71 passengers and injuries to 264 

passengers. Figure 1 shows the number of casualties during 

2006-2017 reported in India because of the rail accidents.  

 

Figure 1. Number of casualties reported in railway accidents 

in India from 2006-2017 (the report (Ministry of Railways, 

Government of India, 2012); list of Indian rail accidents, 

2018) 

Globally, railways followed the preventive maintenance: 

equipment is opened at a fixed interval of time irrespective of 

component condition. Generally, non-destructive testing 

(NDT) based inspections are used which are costly, less 

efficient and time consumable. Sometimes they may not 

detect the defect, which may lead to catastrophic failures 

(Hong, Wang, Su, and Cheng, 2014). Another major 

drawback is that the train has to be stationary during the 

inspection. Nowadays, condition based maintenance (CBM) 

is preferred as it gives real time and in-service measurements 

of the railway components. With this technology, the faults 

can be detected while on the run. This procedure makes 

maintenance faster and increases the availability of the 

number of wagons/coaches for operation. It can identify the 

defect on any of the components, which otherwise would be 

opened during scheduled maintenance interval. For example, 

south-eastern railway replaced 160 bearings due to reported 

noise over a period of 2011-2013, while their service life had 

not expired (Symonds, Corni, Wood, Wasenczuk and 

Vincent et al., 2015). This shows the importance of CBM in 
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railway where the fault was detected at an early stage and was 

repaired at the earliest opportunity (Zhang, 2011).  

Many types of failure may take place during the train service 

but few of them only effect the train operation. Figure 2 

shows the number of railway accidents reported across the 23 

countries over the past few years. The data shows that 37% 

of the accidents are because of rolling stock. Out of these 

37% accidents, almost 60% are because of wheel set failure.  

 

 

 

 

 

 

 

 

 

Figure 2. Railway accidents considered in the D-RAIL FP7 

project by cause (Papaelias, Huang, Amini, Vallely, Day, 

Sharma, and Kerkyras, 2014; Andersen, 2011) 

 

 

 

Figure 3. Canadian mainline derailments  (MLD) by reported 

cause (Moynihan & English, 2007) 

Figure 3 shows the reported number of accidents in Canada 

from 1999-2006. Majority of failures are because of 

axle/wheel (49 % out of 34% equipment failure in the overall 

in Canadian National (CN) Railway, and 54 % out of 34% 

equipment failure in the overall in Canadian Pacific (CP) 

Railway). Figure 4 shows the number of failures in Indian 

Railways during 2009-2014. Rolling stocks have a major 

impact on the train operations and are responsible for more 

than 35% of the total train failures. In Iran, 76.34 % of 

railway equipment failure was found because of the wheel set 

failure based on the failure history data from 2001-2004 

provided by Raja train company of Iran (Rezvanizaniani, 

Barabady, Valibeigloo, Asghari, and  Kumar, 2009).  

 

Figure 4. Percentages of railway accidents by type (India) 

(the report (Indian Railway Accidents Statistics, 2014))  

Most of the accidents in the railways are due to rolling stock 

failure. The present paper also focuses on the causes of failure 

and available sensor’s technologies for monitoring the failure 

of the rolling stock. Different types of failures reported in the 

rolling stock are shown in Figure 5.  

 

Figure 5. Bearing and wheel fault hierarchy (Southern, 

Rennison, and Kopke, 2004) 

Accident Causes Breakdown

36%

37%

25%

1%

Infrastructure Rolling stock Operational failure Others (environment etc)



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

 

3 

Table 1 shows the rolling stock related failure reported across 

the 23 countries over the past few years. Wheels account for 

19 % failures while 41% are because of axle failures in which 

majority are caused due to faulty bearing (Papaelias et al., 

2014; Andersen, 2011). 

 

Table 2 shows the rolling tock failure data from 2001-2004 

provided by the Raja train company of Iran. In Iran also, 

40.70 % failure was reported because of axle bearing and 

19.56 % failure was reported because of wheels  

(Rezvanizaniani et al., 2009).    

 

In order to reduce the unplanned failures, operation and 

maintenance costs, increase reliability and availability of the 

rail vehicles, the maintenance strategy is now shifting from 

preventive maintenance to predictive/condition based 

maintenance. Both wayside and onboard sensing technology 

are available for the rail vehicle components failure 

diagnosis. Different types of sensors such as temperature, 

vibration, acoustic, laser, ultrasonic, and force are used either 

wayside or onboard for diagnosing the axle bearing failure, 

wheel flatness, and wheel profile. The description of these 

sensing technologies and various diagnostic tools for the 

railway equipment fault identification is discussed in the 

section 2.  Section 3 presents a comparison between available 

sensing technologies. Section 4 highlights the benefits of 

using CM technologies in railway. Finally, conclusions are 

presented in section 5 along with an overview of possible 

future research challenges.   

2. SURVEY OF THE EXISTING ONLINE 

CONDITION MONITORING TOOLS 

The condition based maintenance (CBM) program consists of 

three steps: data acquisition, data processing and 

maintenance decision-making (Jardin, Lin, and Banjevic, 

2006). The maintenance decision can be made on-line based 

on the trend present in data. However, it is impossible to 

make the decision based on the trend every time, as the data 

obtained from the sensors are associated with noise. 

Advanced signal processing algorithms are used to process 

the data and extract the useful information. After suitable 

signal processing, diagnosis and prognosis algorithms are 

used for classifying and predicting the fault respectively. 

Diagnosis will detect the presence of the fault, whereas 

prognosis will predict when the fault is likely to occur. The 

next sub-section will discuss these aspects with case studies.  

The sensors used in the condition monitoring of rail stock can 

be either wayside or on-board. Both the technologies have the 

unique advantages and disadvantages which are explained 

hereunder.  

(a) Wayside sensing technology 

The wayside monitoring system is installed in or next to the 

track. It is divided into two categories: reactive and 

predictive. Reactive systems detect faults on the railway 

vehicles and don’t provide any trending information. 

Examples of such systems are the hot box and hot wheel 

detector and wheel impact load detectors (WILD). Predictive 

systems can predict the possible faults that may occur. It can 

measure, record and trend the ride performance of the 

specific components. Acoustic emission detectors and wheel 

profile detector are the examples of such kind of detectors 

(Papaelias et al., 2014; Lagnebäck, 2007). The benefit of 

Wayside technology is that once it is installed it will measure 

the health of all the trains passing over that rail. But in 

wayside technology, noise and various interferences also get 

recorded along with the data, thereby making fault estimation 

difficult. The use of advanced signal proces sing algorithm 

can overcome this problem.  

(b) On-board sensing technology 

 In this technology, the CM sensors are mounted on the bogie. 

Their location depends on specific applications. This 

technology improves the quality and efficiency of the fault 

diagnosis because the sensor measurements are from the 

direct mechanical path. This eliminates the effect of 

surrounding noise and other environmental factors (Zhang, 

2011). The major drawback of this technology is that sensors 

need to be installed on each wheel of the bogie, thus 

considerably increasing the cost of the system.  

Figure 6 shows the architecture for wayside and on-board 

health monitoring of the railway. Using both the sensing 

technologies, the signal from chosen components or systems 

is captured in real time. From the rail vehicle, the data will be 

transferred to the server room either by using GSM technique 

or wirelessly. From the sever room, through internet cloud, it 

can be sent to the control room for signal visualization. In the 

control room, an intelligent system can be installed which is 

capable of diagnose and predict the rail vehicle components 

Table 1. Rolling stock related accidents in the D-RAIL 

FP7 project by cause.  

 

Failure type Failure frequency 

Axles 41 % 

Wheels 19 % 

Bogie Suspension and Structure 22 % 

Others and Unknown 18 % 

 

 

Table 2. Rolling stock related accidents in Iran from 

2001-2004. 

 

Failure type Failure frequency 

Axle Bearing 40.70 % 

Wheels 19.56 % 

Tyre Corrosion 16.08 % 

Bogie Suspension and Structure 9.15 % 

Others and Unknown 14.51 % 
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life based on the approaches such as neural networks, fuzzy 

logic, expert systems, wavelet, empirical mode 

decomposition, etc. The intelligent installed in the control 

room should be programmed and capable of answer the 

questions such as in which component or systems faults exist, 

cause of failure, how much time component/system can 

survive based on the current condition of the 

component/system, consequences of the component failure, 

and recommended maintenance action (Marcus, 2003). 

Through the internet cloud, the control room can 

communicate with an alarm and display system installed in 

the driver cabin and also to the maintenance department. A 

failure threshold limit will be decided for each component 

based on the expert and system knowledge. If the signal level 

crosses the failure critical limit, an alarm will buzzer inside 

the train and simultaneously a message about the nature and 

severity of fault related to specific component can be sent to 

the maintenance department and railway driver. Based on 

subjective knowledge, the driver can make the decision 

regarding train stoppage. At the same time, maintenance 

personnel can get ready with necessary spare parts to repair 

the faulty component. It would save time and may avoid 

catastrophic failure.  
 

 

Figure 6. CBM architecture for railway 

2.1. Types of sensing technology for railway vehicles  

(a) Hotbox and hot/cold wheel detector 
 

Hot box detectors (HBD) and hot/cold wheel detectors 

(HWD/CWD) are the oldest condition monitoring sensors. 

These are wayside sensors used for monitoring wheel, axle 

bearing and brake temperature. Infrared cameras are used for 

precisely measuring the temperature by digital processing of 

infrared images. The HBD is used for measuring the bearing 

temperature while hot/cold detector measures the wheel 

temperature. Hot wheel temperature indicates brakes are not 

fully released when the vehicle is moving, causing damage 

because of built up stresses in a locked wheel. Cold wheel 

temperature indicates the inadequate performance of the 

braking system (Papaelias et al., 2014; Moynihan & English, 

2007; Lagnebäck, 2007). With these sensors, fault is 

identified in the bearing or wheel when these are in full 

failure mode, requiring immediate stoppage of train causing 

disruptions in traffic. Because of this critical disadvantage; 

these detectors are likely to be phased out in next 10-15 years, 

generating a need to develop new diagnostics tools (Symonds 

et al., 2015). 

 
(b) Wheel profile or tread monitoring  
  

Wheel profile technologies generally use high-speed CCD 

cameras and a laser diode installed wayside to measure wheel 

and rail head profiles when the train is moving at a normal 

speed (Moynihan & English, 2007; Lagnebäck, 2007; 

Attivissimo, Danese, Giaquinto, and Sforza, 2007). Wheel 

images are captured by lasers and then compared with the 

new wheel profile by using digital image processing 

techniques. The captured image can be analyzed in near real 

time by making key measurements including wheel treads, 

flange height, flange thickness and rim thickness (Moynihan 

& English, 2007; Attivissimo et al., 2007).   
 

Cavuto, Martarelli, Pandarese, Revel, and Tomasini (2016) 

used an air-coupled ultrasonic method for measurement of 

the radial and circumferential wheel defect. It is an on-board 

sensing technology installed in the proximity of the wheel 

directly on the bogie. As shown in figure 7, an encoder is used 

for measuring the angular position of the wheel. Ultrasonic 

waves generated using laser were detected by the air-coupled 

ultrasonic probes which are installed on a frame and can 

move along the wheel axial and radial direction. This 

technique works on the low energy waves and is beneficial 

over conventional laser-ultrasonic systems operating under 

the ablative regime. A collimated laser beam of the diameter 

of 4 mm keeps the ultrasonic waves in between ablative and 

thermo-elastic regime. Since coupling medium is air, there is 

no need for probes to be in contact with the investigated 

object. On-board installation of this technique over each 

wheel can be costly because of the high cost of laser 

technology.  

 

Figure 7. The laser-ultrasonic experimental set-up (Cavuto 

et al., 2016) 
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The shortcoming of the laser technology is its limited 

resolution. Also, laser source and camera require precise 

setup which may not be suitable in the railway environment. 

In addition, small irregularities or adherences on the surface 

may lead to false indications (Attivissimo et al., 2007; 

Brizuela, Fritsch, and Ibáñez, 2011). 

To overcome the problems with the laser, Salzburger, 

Schuppmann, Wang, and Gao (2009) developed a new 

ultrasonic inspection system AUROPA III. This system 

detects crack-like defects in the tread of the railway wheels 

when the train is moving up to 15 km/h. The inspection 

principle of AUROPA III is shown in figure 8.  

This system uses electromagnetic probes and generates 

magnetic field normal to the wheel surface. When a train is 

in close proximity to the sensor, a special sensor detects the 

arrival of the wheel and transmits Rayleigh waves or 

ultrasonic waves which travel around the rolling surface. The 

RF coil is used for generating and receiving the ultrasonic 

waves. The ultrasonic waves make several round trips around 

the tread of the wheel and echoes will occur if any 

discontinuity is present. 

 

Figure 8. In-motion wheel inspection principle (Salzburger 

et al., 2009) 

The disadvantage of this technique is that it cannot detect the 

rounded defects because their smooth edge produces small or 

no echoes (Brizuela et al., 2011). 

 (c) Wheel flatness  

The wheel can fail because of polygonization, out of 

roundness, cracks and flatness in the tread. Flatness is most 

important because a wheel sliding for 200 or 300 meters 

produce a large wheel flat instead other needs thousands of 

kilometre to grow (Bracciali, Lionetti, and Pieralli, 1997). It 

happens during the braking process when the wheel gets 

locked and consequently slides along the rail. Low wheel-rail 

adhesion because of environmental conditions (rain, snows, 

leaves, etc.) also causes the wheel flatness (Brizuela et al., 

2011).  

Wheel impact load detector (WILD) is generally used for 

measuring the wheel flatness. Large numbers of strain 

gauges, load cells or accelerometers are used in WILD 

system for measuring the generated impact load when the 

defective portion of the wheel is moving on the rail head 

(Brizuela, Fritsch, and Ibáñez, 2011). This system detects the 

defect at very early stage and helps in avoiding derailment 

and catastrophic failures (Papaelias et al., 2014; Moynihan & 

English, 2007; Bracciali et al., 1997; Stratman, Liu, and 

Mahadevan, 2007). The WILD can also measure the out of 

roundness, overloaded axles, defect in suspension systems 

and misalignment of bogies. Recently WILD system 

developed by Research Design and Standards Organisation 

(RDSO) unit of Indian Railway in collaboration with IIT 

Kanpur is installed at 15 different locations on the wayside of 

the track. Based on the data gathered from the users it was 

found that 48 % of the wheel failures were detected by using 

this technology (the report (RDSO, Indian Railways, 2012); 

the report (RDSO, Indian Railways, 2014)). The drawback of 

WILD is that it requires a large number of strain gauges or 

accelerometers placed along the rails and hence a low 

reliability and high cost. In addition, it is affected by the dirty 

railway environment and can make false detection (Bracciali 

et al., 1997).  

To overcome these disadvantages, wheel force detector 

(WFD) is developed by GE transportation in collaboration 

with University of Florence. This sensor has high 

performance to cost ratio and gives better results compared 

to the WILD system. Piezocable is used as a sensing element, 

which is sensitive to vibrations in all directions and less 

damped with the distance and hence defects detectability 

increased. These short length piezoelectric cables are 

mounted on a small aluminum block preloaded by special leaf 

spring and detect the wheel force (Bracciali et al., 1997).  

Li, Liu, and Wang (2016), Belotti, Crenna, Michelini, and 

Rossi (2006) and Skarlatos, Karakasis, and Trochidis (2004) 

shows that many time use of only one accelerometer is 

enough for wheel flat measurement. In addition, 

accelerometer sensor doesn’t have any train speed restriction 

during signal collection. The vibration signals are always 

contaminated by various interferences and noise and hence it 

is difficult to extract the fault relevant characteristics from 

raw vibration signal. Advanced signal processing algorithms 

are required for fault identification (Li et al., 2016). Discrete 

Wavelet Transform was used by Belotti et al. (2006) for 

wheel flat estimation whereas, Skarlatos et al. (2004) used the 

fuzzy logic methodology. 

In order to improve the quality and efficiency of the fault 

diagnosis, Li et al. (2016) developed a rolling stock field 

simulator in which sensors are installed on the axle box 

(Figure 9).  

This simulator can examine and reveal the sign of the faults 

which are difficult to perform by test on tracks. The vehicle 

is set on rollers which act as a rail and motion to the roller is 

provided by the servo-hydraulic actuators. A defined 

waveform input or measured track irregularity can be given 

with the help of a digital controller. Instead of wavelet and 
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short time Fourier transform (STFT), Empirical Mode 

Composition (EMD) method is used because the STFT and 

wavelet uses some basic function for approximation. 

Incorrect results may occur, when the basic function does not 

match with the characteristics of the raw signal. The benefit 

of this technique is that it can be used for extraction of non-

linear and non-stationary characteristics of the vibration 

signal. 

 

Figure 9. Rolling stock simulator (Li et al., 2016) 

To avoid the electromagnetic inference by using of strain 

gauges and piezoelectric sensors, Roveri, Carcaterra, and 

Sestieri (2015), Wei, Xin, Chung, Liu, Tam, and Ho  (2012), 

Liang, Iwnicki, Feng, Ball, Van Tung, and Cattley  (2013) 

and Wei, Cai, Tam, Ho, and Xin (2012) used the Fibre Bragg 

Grating (FBG) sensor which measures the rail strain response 

under wheel-rail interaction. The sensor is  multiplexed in a 

single electric cable and allow distributed sensing over 

significant areas with FBG compared to multiple sensors 

used in WILD (Roveri et al., 2015). The strain responses at 

the wheel-rail interaction are measured and a condition index 

is generated which directly reflects condition of the wheel 

(Wei et al., 2012). This sensor can monitor both rail and 

wheel defects. In Milan, 50 FBG sensors were installed along 

1.5 kilometres of the track with a train moving at a speed of 

maximum 90 km/h. Schematic of FBG sensor is shown in 

figure 10.  

This sensor used a distributed Bragg reflector, which reflects 

a particular wavelength and transmits all others. The reflected 

Bragg wavelength 𝜆 𝐵 can be defined as (Roveri et al., 2015) 

 𝜆 𝐵 = 2𝑛𝛼                           (1) 

where, 𝑛 is the refractive index of the fibre and 𝛼 is the index 

modulation. When the rail is deformed, 𝑛  and 𝛼  gets 

modified and frequency bandwidth of the reflected light is 

changed. The spectrum analyzer detects this variation. After 

suitable signal processing, the presence of the defect can be 

detected. Liang et al. (2013) used three time-frequency 

transform i.e., STFT, Wigner-Ville Transform (WVT) and 

Wavelet Transform (WT) to extract fault related information 

from the vibration signal and found them useful for detecting 

the rail surface defects as well as wheel flat. The sensor is 

glued on the rail and hence reliability and durability of FBG 

sensor is still under investigation (Wei et al., 2012; Liang et 

al., 2013). 

 

Figure 10. Schematic of the FBG sensor (Roveri et al., 

2015) 

The methodologies discussed so far WILD, WFD, 

piezoelectric and FBG detect the presence of flat. However, 

the size of the flatness is also important for decision making 

regarding train stoppage. Brizuela et al. (2011), Brizuela, 

Ibañez, and Fritsch (2010) and Brizuela, Ibañez, Nevado, and 

Fritsch (2010) used ultrasonic waves to detect the size of the 

wheel defect. Figure 11 shows a simplified model for the 

wheel flatness measurement, where, 𝑋𝑐  is the height of the 

wheel center. The depth ‘d’ and length ‘L’ of the defect can 

be calculated as  

 𝑑 = 𝑅 − 𝑅 cos 𝜃  (2) 

 𝐿 = 2𝑅 sin 𝜃 = 2𝑅√1 − cos 2 𝜃  ≈  √8𝑑𝑅  (3) 

Here, 𝜃 is the rotation angle and R is the radius of the wheel.  

Figure 12 shows the prototype of a wheel flat detector which 

detects the size of the flat using Doppler Effect. Interrogating 

ultrasonic (Rayleigh) waves propagate when a wheel is 

moving on the measuring rail at a constant angular speed. 

Compared to conventional ultrasonic NDT transducers, 

which are based on the reflectivity of static flaws, here 

kinematics of the echo produced at the wheel-rail contact 

point is analyzed.   

 

Figure 11. Simplified wheel flat measurement model 

(Brizuela et al., 2010) 
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Figure 12. Wheel flat detector prototype (Brizuela et al., 

2010) 

Let us considered that rail-wheel contact is a mobile reflector 

point and moving at a constant angular speed 𝜔 over the 

measuring rail, 𝑓𝑠  is the emitted frequency, c is the ultrasonic 

propagation velocity, and then received frequency  𝑓𝑑  can be 

calculated as (Brizuela et al., 2010) 

 𝑓𝑑 =  
2𝜔𝑅

𝑐
𝑓𝑠   (4) 

When the wheel surface is irregular, this nominal Doppler 

frequency for a radius R will have a deviation given by 

 ∆𝑓𝑑 =  𝑓𝑑
(𝑅) −  𝑓𝑑 (𝑅𝑚𝑖𝑛 .   (5) 

Now, depth of irregularities can be related to the Doppler 

shift frequency as follows 

 𝑑 =  
∆𝑓𝑑

𝑓𝑑

𝑅  (6) 

The difference between emitted and received frequencies will 

change if defect is present on the wheel surface and thus 

resulting deviation in Doppler frequency gives  depth of 

defect. The length of defect can be calculated from Eq. (3).  

Brizuela et al. (2011) measured the wheel flatness by 

calculating round-trip time of flight (RTOF) of echo 

produced during the rail-wheel contact point. A mathematical 

relationship between the depth of flat ‘d’, wheel radius ‘R’, 

velocity ‘v’ and RTOF is given. As wheel velocity and radius 

is constant, so variations in RTOF of the echo will be detected 

and quantify the wheel flat. The major limitation of these 

systems is that they will detect the defect size only when the 

train is moving at a slow speed (5-15 Km/h) (Brizuela et al., 

2011; Brizuela et al., 2010). So, it is imperative to install 

these detectors near the station where train speed is low. 

Restriction on the train moving speed is the biggest problem 

while using above mentioned sensors for measuring wheel 

flatness except with accelerometers. Acoustic emission (AE) 

sensors were tested by Bollas & Papasalouros (2010) for 

measuring the wheel flatness when the train is moving at a 

speed of 5 to 40 km/h. The sensors were mounted on the rail 

to monitor the AE transferred through the rail in real time. 

After signal processing and removing low frequency 

component from the signal; AE features such as RMS, 

absolute energy, etc. were extracted to measure the presence 

of the wheel flatness.  

Wheel crack can also be detected using AE sensors if AE 

waves generated by growing crack are transmitted through 

the wheel to the rail (Amini, Entezami, Kerkyras, and 

Papaelias, 2013). One such attempt is made by Yilmazer, 

Amini, and Papaelias (2012) for continuous monitoring of the 

crack growth.  

(d) Railway bearing health monitoring 

Railway bearing allows the frictionless movement along the 

rail. Journal box holds the oil to keep the wheel bearing 

operation smooth. Any defect in the bearing causes the 

friction and heats up the journal box known as “hot box” 

which can be detected by hot box detector (HBD). The HBD 

detects defect in the advanced defect stage as explained 

earlier in section 2.1 (a). So there is a need for advanced 

technology, which can detect the defect at an early stage. For 

example, faulty bearing generally produces noisy rubbing 

sound and an acoustic emission (AE) sensor can be useful to 

detect the bearing health state. In addition, a defect in the 

bearing produces high level of vibration and accelerometer 

sensors are also used for bearing health monitoring. The data 

obtained from these sensors are contaminated with noise and 

interferences and hence the advanced level of signal 

processing is required for fault detection.  

Association of American Railroads (AAR) used 12 wayside 

microphone arrays to measure the bearing noise. The 

microphone arrays were mounted horizontally and at the 

same height of centerline of roller bearings. Fault in the 

bearing was detected by acoustic signature frequencies 

generated because of defective bearing and envelope of the 

signal (the report (U.S. Department Federal Railroad 

Administration, 2003)).  

The defect in inward bearing is difficult to detect using 

wayside acoustic arrays. Moreover, it may give false 

information about a defect or may fail to identify a defect.  

Amini et al. (2013), Choe, Wan, and Chan (1997) and 

Papaelias, Amini, Huang, Vallely, Dias, and Kerkyras (2014) 

installed AE sensor on the rail for bearing fault estimation. 

Physical coupling of the sensor on the rail gives much 

information about the fault in the bearing compared to 

microphone arrays. Amini et al. (2013) detected both wheel 

flat and axle bearing fault using AE sensors. Higher 

amplitude in the raw AE signal was observed for the faulty 

bearing. 

Choe et al. (1997) used neural network approach for 

classifying different railway bearing defect with the help of 

AE signals. Four different transforms or features were 

extracted from the raw acoustic data: Fast Fourier Transform 

(FFT), Continuous Wavelet Transform (CWT), Discrete 

Wavelet Transform (DWT) and Wavelet packet.  

Classification rate was calculated with individual feature and 

highly accurate results were found with all these features.  
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Papaelias et al. (2014) and Papaelias et al. (2014) installed 

both AE and accelerometer sensor on the wayside of the rail. 

Moving RMS extracted from AE and vibration signals was 

found to be useful for measuring the severity of the bearing 

fault and wheel flat respectively. 

The results from AE sensors  are quite impressive but 

obtained at a higher price (Choe et al., 1997). The major 

drawback with AE sensor is that attenuation of the signal is 

very severe and sensor needs to be placed close to the 

bearing. Secondly, interpreting and classifying the 

information from raw AE data is difficult (Cao, Fan, Zhou, 

and He, 2016).  

The results obtained for the wheel flatness measurements 

with the accelerometer are quite good and hence 

accelerometer can be used as an alternative to the acoustic 

sensor for bearing condition monitoring.  

Railway wheel bearing fault identification using vibration 

signal is carried out by several authors. Wayside 

accelerometers are used by Cao et al. (2016), Sneed & Smith 

(1998) and Donelson & Dicus (2002), whereas, on-board 

accelerometers are used by Symonds et al. (2015), Zhang 

(2011), Corni, Symonds, Wood, Wasenczuk, and Vincent 

(2014), Chen, Yan, and Chen (2014) and Chudzikiewicz, 

Bogacz, and Kostrzewski (2014). Different signal processing 

algorithms are used to process raw vibration signal because 

wheel/rail interface noise entered into the accelerometer with 

full strength. Cao et al. (2016) used empirical wavelet 

transform (EWT) for identifying the outer race fault, roller 

fault and the compound fault of the outer race and roller.  

Keeping sensors on-board will give more accurate results 

because with the direct mechanical path the effects of the 

surrounding noises and other environmental parameters will 

be eliminated (Zhang, 2011). So on-board sensing is 

preferable as compared to the wayside. 

Chen et al. (2014) developed a test rig to simulate the real 

wheel-bearings condition. The accelerometers were mounted 

on the surface of the outer race. Entropy, time spectral 

kurtosis (TSK) and support vector machine (SVM) based 

methodologies are used for bearing fault identification. 

Zhang (2011) used high-frequency envelope detection 

approach for fault identification. High frequency band-pass 

filter has been used to retain the high-frequency components 

and the fault was identified by calculating the power 

spectrum of the filtered signal.  

Self-powered wireless sensor node was installed in the UK 

for monitoring the health of the bearing. This sensor works 

on the principle of vibration harvesting and can record the 

data in all three directions (Symonds et al., 2015; Corni et al., 

2014). Features such as 𝑅𝑀𝑆𝑋 , 𝑅𝑀𝑆𝑌 , 𝑅𝑀𝑆𝑍 , 𝑃𝑒𝑎𝑘𝑋 , 

𝑃𝑒𝑎𝑘𝑌 , 𝑃𝑒𝑎𝑘𝑍  and vertical FFTs are calculated from the raw 

vibration signal. These features are combined and wirelessly 

sent to the cloud. Bearing health index (BHI) and wheel 

health index (WHI) values are calculated from these features 

which are available in real time and can be used for 

identifying the bearing and wheel issues (Corni et al., 2014). 

Similarly, Chudzikiewicz et al. (2014) placed the 

accelerometers over the axle box for health monitoring of the 

bearings of an EMU train. 

Vibroacoustic measurements were made by Bellaj, Pouzet, 

Mellet, Vionnet, and Chavance (2011) for fault detection in 

high speed train bearings. On-board measurements from 

accelerometer sensors show the increase in the vibration 

levels in the high-frequency region (beyond 2 kHz) for the 

damaged bearings. Trackside microphones were used for 

identifying the defective axle box. The signal noise level 

filtered in the 16 kHz octave band allows the discrimination 

between the healthy and faulty bearing. The fault detection 

capability from both the sensors was found better at higher 

train speed (greater than 60 km/h). 

(e) Miscellaneous 

A guide wave (GW) based structure health monitoring 

technique is developed in China and experimented on 

Beijing-Shanghai high speed train. The piezoelectric lead 

zirconate titanate (PZT) sensor network was integrated into 

the bogie frames during final assembly (Figure 13).  

The range of bogie-guided ultrasonic waves is generated and 

acquired by the PZT wafer. Numbers of linear and nonlinear 

GW features are extracted. Fusion of these features through a 

diagnostic imaging algorithm give various genres of damage 

index and estimates the overall health state of the bogie in a 

real-time (Hong et al., 2014).   

In the USA, Transportation Technology Center Inc. (TTCI) 

developed a laser air-coupled hybrid ultrasonic technique 

(LAHUT) for automatic detection of cracks in axle 

(Moynihan & English, 2007). Ultrasonic surface waves were 

generated by a laser pulse travel from the mid-point of the 

axle outwards towards both the wheels. Two air-coupled 

ultrasonic transducers were installed for detection of the 

source pulse and any additional echo produced because of the 

surface crack.  

 

(a) 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

 

9 

 

(b) 

Figure 13. (a) Principle of the proposed SHM technique for 

train bogie frames (b) standard PZT sensing units (Hong et 

al., 2014) 

SKF developed multilog on-line system IMx-R for 

evaluating the condition of all bogie rotational components, 

i.e., motors, gearboxes, axle boxes, wheels and bearing (the 

report (Global Railway Review, 2014)). This system has 

inbuilt intelligent diagnostics capabilities. 

3. COMPARISON OF VARIOUS  CM SENSORS 

Based on the above review, Figure 14 gives an overview of 

the available CM technologies for the bearing and wheel. 

Comparative analysis of various sensing technologies is 

given in Appendix. 

 

Figure 14. Overview of available CM technologies for 

railway bearing and wheel health monitoring 

4. GLOBAL OVERVIEW 

Globally, it is observed that implementation of the CBM 

technology in railway helps in reducing maintenance cost and 

accidents and life of the component are increased. From 2008 

to 2012, Indian railway installed 15 WILD systems at 

different locations and detected early wheel failure 48% of 

the time (the report (RDSO, Indian Railways, 2012); the 

report (RDSO, Indian Railways, 2014)). In North America, 

more than 1000 HBD/HWD and 100 WILD were installed in 

last 20 years (Lagnebäck, 2007). Canada national railways 

had installed 452 of these wayside detection systems up to 

2002. In 2003, Union Pacific railroad in the USA used the 

technology developed by the Canada national railway and 

installed around 1200 HBD in their railway network. In 2000, 

Great Britain introduced the WheelChex® in their railway 

network for detection of wheel flats and out-of-round wheels. 

Total 30 WILD sensors were installed and an 80% reduction 

in wheel failure over a span of 2 years was observed. The 

same trend was also observed in Spain, where the 

introduction of WheelChex® system reduced the wheel 

failure by 80% in 18 months. In the Netherlands, the 

introduction of GOTCHA (wheel flat detection and axle load 

measurement system) and QUO VADIS (weigh-in-motion 

system) system decreases the hot axles and spring failure by 

90%. Both the systems were installed at 38 locations covered 

around 80% of the traffic movement.  

An iron ore company BHP Billiton in Australia installed the 

different wayside condition monitoring systems such as 

HBD/HWD, WILD, weigh-in-motion, hunting detectors, 

track performance measurements and acoustic bearing 

detectors (Lagnebäck, 2007). Implementation of these 

technologies reduces the cost of railway transportation by 

50% between 1990 and 1998 and vehicle service life of many 

major components, i.e., bogies, wheels and car bodies are 

increased by three times. Track life also increased five times 

by implementation of these technologies from 1972 to 2000. 

Australia Rail Transport Corporation (ARTC) deployed 

railway bearing acoustic monitoring (RailBAM) system since 

December 2001 and found their system availability 

exceeding 97%.  Approximately 1,30,000 bearings were 

analyzed per month by the RailBAM installed at different 

locations (Southern et al., 2004). Association of American 

Railroads (AAR) found that approximately 85% of the 

bearing faults were correctly identified by the acous tic 

bearing detector system (Choe et al., 1997). In the UK, on-

board self-powered WSNs were installed in Southeastern 

Electrostar fleet (148 trains and 4944 wheels) (Corni et al., 

2014).  

Figure 15 shows the number of the derailments prevented by 

implementation of wayside technology installed in Cornrail. 

If a detector prevents one derailment, it pays more than for 

itself because each derailment costs a million dollars (Steets 

& Tse, 1998).  

Figure 16 shows the cost associated because of derailments 

in 1996 and 1997 in Cornrail. As it evident from Figure 16, 

bearing and wheels failures are associated with very high 

costs, compared to costs associated with failure of other 

components. The wheel derailment cost is significantly 
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reduced from 1996 to 1997 because Cornrail deployed wheel 

impact and sliding wheel detector system in their railway 

network.  

 

Figure 15. Number of derailment prevention using wayside 

detectors (Steets & Tse, 1998) 

 

Figure 16. Cost of the freight car caused derailments (Steets 

& Tse, 1998) 

Maintenance accounts for 30% of the life cycle costs , the 

highest cost factor in the high speed train (Palem, 2013; Lee, 

Lee, and Kim, 2016). Palem (2013) observed that the 

implementation of predictive maintenance program in the 

high speed railway can reduce maintenance cost 25% to 30%, 

elimination of breakdowns 70% to 75%, spare parts inventory 

reduced 20% to 30%, reduction in equipment downtime 35% 

to 45%, and asset life increased 20% to 40%. To reduce the 

life cycle costs of the rolling stock in Korea metro, Korea 

Railroad Research Institute implemented the condition based 

maintenance program since 2014. Based on the life cycle cost 

analysis, it is observed that the implementation of the 

predictive maintenance program in the Korea metro will 

reduce the total life cycle costs of more than 20% (Lee et al., 

2016).   

The cost is also very important while implementing the 

condition monitoring system. In literature, no specific data is 

found related to the implementation cost of the condition 

based maintenance program in railway. However, some cost 

analysis is presented here for CBM program implementation 

in the railway. The cost of the CBM program depends on the 

type of sensor used for health monitoring of the rolling stock. 

For example, the approximate cost of a vibration sensor is 

50000 INR and the approximate cost of an acoustic emission 

sensor is 150000 INR. The approximate cost of data 

acquisition per sensor/channel is 60000 INR. The cost of 

developing the health monitoring software with display 

device can be considered as 1000000 INR. Each rail bogie 

has two wheel axles with four wheels and the sensor should 

be installed on each wheel of the bogie. A coach in which the 

passenger travel, including the two bogies and hence eight 

sensors should be required for health monitoring of wheel set 

of a coach. The overall implementation cost per coach can be 

calculated as  

CBM program implementation cost per coach= Health 

monitoring software and display device cost + (Single sensor 

cost + Data acquisition cost per sensor) × Number of sensors 

per coach 

= 1000000 + (50000 + 60000) × 8 = 1880000              (for 

vibration sensor) 

or 

= 1000000 + (150000 + 60000) × 8 = 2680000   (for 

acoustic emission sensor) 

5. CONCLUSIONS 

In this paper, an attempt has been made to summarize the 

recent developments in online condition monitoring of the 

railway equipment.  The wheel stock failure is found to be 

the major cause of the overall system failure, which leads to 

the derailment of the train. Detailed explanations have been 

given about the wayside and on-board sensing technologies.  

Qualitative and quantitative benefits across the globe using 

CM technology in railway are also reviewed. The advantages 

and disadvantages of various sensing technologies have been 

enumerated, which would help in selection of sensors for a 

particular damage inspection. The observations made from 

this review are summarized below. 

 The on-board sensing technology is superior because the 

direct mechanical path it provides between sensor and 

equipment eliminating the effect of the surrounding 

noise and interferences. However, deploying the sensors 

on-board increases the cost because the sensors are 

required to be installed on each wheel of the bogie. 

Development of cheap on-board sensors can be an 

important direction for further research. In this direction, 

Perpetuum Ltd. developed the on-board accelerometer 

which is working on the principle of vibration 

harvesting. 

 The wayside sensing technology is found to be widely 

used because of its economical modeling of damage. 

There is a need for further research on wayside sensing 

technologies to increase their effectiveness for robust 

fault diagnosis and better decision making.      
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 In most of the cases, deviation of the captured signal 

from the reference signal is taken as an indication of 

damage. However, sometimes the signal obtained from 

the sensors doesn’t show any trend because of the effect 

of noise and interferences. In that scenario, advanced 

signal processing algorithms are required for fault 

estimation. 

 Most of the sensing technologies available for wheel 

profile and flatness have the restriction on the train 

moving speed during measurement. Sensors need to be 

developed which can measure the wheel condition at 

higher speeds.    

 So far, no work has been reported on the prognosis of the 

railway components. Diagnosis provides information 

whether a fault has occurred or not, but the 

implementation of the prognosis algorithm would give 

an advanced alert of the failure and hence optimizes the 

life span of the component.   

 Influence of operational parameters such as load and 

speed and external environmental conditions such as 

temperature needs to be considered in the fault diagnosis 

model for better damage detection capability. 

 In summary, the review suggests that the further 

development of new CM sensing technology for better 

damage detection capability and integration of various 

sensing technologies and automation is required. 
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APPENDIX 

Comparison between railway health monitoring sensing technologies. 

Sensor Name Installation 

Location 

Monitoring 

Object 

Merits Demerits Fault Estimation 

Methodology 

Hot Box Detector 

 

Hot/Cold Wheel 

Detector 

 

Wayside 

Bearing 

 

Wheel 

- Cost is very less. 

- Simple to use. 

- Identifies the fault 

when the component is 

in full failure mode. 

Temperature trend 

analysis. 

Laser Imaging 

 

 

 

Air-coupled 

Ultrasonic 

 

AUROPA III 

Wayside 

 

 

 

  On-board 

 

 

Wayside 

 

 

 

 

Wheel 

Profile 

Monitoring 

 

 

 

- Simple to use. 

 

 

 

- No coupling medium is 

required. 

 

- No coupling medium is 

required. 

- Limited resolution. 

Small Irregularities on 

the surface may lead to 

false indication. 

- Because of high cost 

of laser, on-board 

installation is costly. 

- Cannot detect rounded 

flats. 

Compare the 

captured image 

with the reference 

image. 

Echoes will 

generate if any 

fault is present. 

Echoes will 

generate if any 

defect is present. 

WILD 

 

 

 

 

WFD 

 

 

Accelerometer 

 

 

 

 

 

 

 

FBG 

 

 

 

 

Ultrasonic 

 

 

Acoustic 

Wayside 

 

 

 

 

Wayside 

 

 

Both 

 

 

 

 

 

 

 

Wayside 

 

 

 

 

Wayside 

 

 

Wayside 

 

 

 

 

 

 

 

 

 

 

 

 

Wheel 

flatness 

 

 

 

 

- Sensor accuracy is very 

high. 

 

 

 

- High performance to cost 

ratio. 

 

- A Single sensor is 

required. 

 

 

 

 

 

 

- Avoid electromagnetic 

inferences. 

- No restriction on train 

moving speed. 

 

- Give size of flatness. 

 

 

- No restriction on the train 

moving speed. 

- Multiple sensors are 

required. 

- Electromagnetic 

Inferences. 

 

- Electromagnetic 

Inferences. 

 

- High level signal 

processing algorithms 

are required for fault 

estimation. 

 

 

 

 

- Sensors are glued on 

the rail, there reliability 

and durability need to 

be improved. 

 

- Restriction on the train 

moving speed  

- Accuracy is not much 

high. 

Wheel impact trend 

analysis. 

 

 

 

Wheel impact trend 

analysis. 

 

EMD (Li et al., 

2016), Moving 

RMS (Papaelias et 

al., 2014; Papaelias 

et al., 2014), Fuzzy 

Logic (Skarlatos et 

al., 2004) 

 

STFT, WVT, WT 

(Liang et al., 2013) 

 

 

 

Doppler effect 

 

 

RMS (Amini et al., 

2013; Bollas & 

Papasalouros, 

2010), Energy 

(Bollas & 

Papasalouros, 

2010) 
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Acoustic 

 

 

 

 

 

 

 

Accelerometer 

Both 

 

 

 

 

 

 

 

Both 

 

 

 

 

 

 

 

 

 

Bearing 

-Highly sensitive to bearing 

fault. 

-No restriction on the train 

moving speed 

 

 

 

 

- Vibration Signals are 

easily interpretable 

compared to AE signal. 

- No restriction on train 

moving speed. 

- Highly costly. 

- Interpreting and 

classify the information 

from raw AE data is 

very difficult   

 

 

 

- Accuracy is not better 

than acoustic. 

NN, FFT, CWT, 

DWT, WP (Choe et 

al., 1997), Moving 

RMS (Papaelias et 

al., 2014; Papaelias 

et al., 2014), RMS 

(Amini et al., 2013) 

 

EWT (Cao et al., 

2016), TSK, SVM 

(Chen et al., 2014), 

HFED (Zhang, 

2011), RMS, Peak, 

FFT (Symonds et 

al., 2015; Corni et 

al., 2014), 

Envelope Analysis 

(Bellaj et al., 2011) 


