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ABSTRACT

In this paper we examine the possibilities of using sensor data
from trains in service to develop a real-time monitor of the ad-
hesion conditions of the rail. In everyday railway operations,
low adhesion conditions of the track are an important chal-
lenge for railway operators, since these may result in a loss
of punctuality, an increase in wear of both wheel and rail, and
in an increase of the risk for red signal passage in situations
where trains are unable to stop in time. At the same time, pru-
dent driving behavior while the adhesion conditions returned
to normal, results in unnecessary train delays. A central is-
sue here is that rail adhesion conditions vary across space and
time. To date it is a major challenge to give accurate real-time
information on adhesion conditions to train drivers and infras-
tructure operators. With real-time monitoring of the adhesion
conditions, the drivers could adjust their (de)acceleration con-
trol to local adhesion conditions and thereby minimize wear,
and the infrastructure managers could improve the track con-
ditions by taking friction enhancing measures. In this paper
we demonstrate the feasibility to detect adhesion conditions
using sensor data already available in passenger trains.

To monitor the adhesion conditions of the track, we used real-
time sensor data from ~20 trains. We designed an algorithm
that can diagnose track sections as having either slippery or
normal adhesion conditions. Specifically, we trained a logis-
tic classifier on a data set that contained reported rail adhe-
sion conditions as well as sensor data from trains in service,
such as information about traction, velocity, excessive wheel
slip-/sliding detection, and weight. We then assessed the per-
formance of this classifier using an independent test data set.

This first assessment shows a classification accuracy of ap-
proximately 77%, with a ~23% false positive rate and a ~23%
false negative rate, when compared to the drivers reporting.
Several improvements are proposed to increase the sensitiv-
ity, which outline the directions of our future research towards
the implementation of a real-time monitor of railway track
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adhesion conditions.

1. INTRODUCTION

Every railway operator, infrastructure manager and even the
passengers know the problem: autumn comes, leaves fall and
the railway tracks get slippery. Extended traveling times and
disruption of the schedule are often the result. Low adhesion
conditions on the track can have several causes. Apart from
leaves in combination with moisture, also other substances
can cause a decrease of adhesion. Examples of this are the
combination of rust and moisture, precipitated air pollution,
e.g from chemical plants, friction decreasing lubricants that
are sometimes applied in curves, or the output of the trains
toilet when it is deposited on the track (Van Steenis, 2010).

The consequences of low adhesion reach beyond disruption
of the schedule. Wheel slip and sliding causes damage to the
rolling stock and the track. Extreme low adhesion may also
have consequences for safety (Van Steenis, 2010).

Currently NS, which is the principal railway operator in the
Netherlands, has two systems in place to alert the drivers and
the traffic controllers of low adhesion conditions. The first
measure is a low adhesion prediction model from the infras-
tructure owner ProRail that is mainly based on the weather
conditions. This model identifies regions and time intervals
where the probability of slippery tracks is increased. The sec-
ond system to alert drivers and traffic controllers comes from
the drivers themselves. When they notice slippery tracks they
report this to the traffic controllers who in turn will warn the
drivers passing that region in the next two hours. Moreover
they take other measures to secure safety if needed.

These systems are, however, not perfect. The prediction model
is modestly accurate, and also the driver’s observations are
neither complete nor always true. Moreover, the duration
of the low adhesion conditions is unknown and is currently
heuristically estimated to two hours from the moment no-
ticed. However, it can be longer or shorter. If the low adhesive
track is back to normal within two hours, unnecessary prudent
driving results in unnecessary train delays. On the other hand,
if the adhesion is still low after two hours, unnecessary dam-
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ages to wheel and rail could occur. Hence it would be of great
value to have a real-time, accurate and objective measure of
the adhesion conditions of the track. Drivers and traffic con-
trollers could be warned more accurately, hence safety mea-
sures and adjusted driving behavior can be deployed if and
only if needed. An additional advantage is that an objective
measure of the adhesion conditions can help to improve the
prediction model, which in turn is particularly useful when
applying preventive measures against low adhesion.

In an ideal world train drivers, traffic controllers and infras-
tructure managers would have near real-time information about
the level of adhesion that is time and space dependent and
covers the entire track. Many existing field measuring sys-
tems are custom built vehicles especially designed to deter-
mine the friction of the track (Magel, 2017). With a small
amount of such vehicles it is impossible to give accurate near
real-time information at all locations. When only low cost
sensors would be needed, many trains could be equipped with
them and many vehicles could contribute to the measurement.
Hence near real-time data would be available for all locations.
Hubbard et al. pursue methods using information from such
low cost sensors that could be mounted on many trains in nor-
mal service. The methods are based on the dynamics of the
system (Hubbard, Ward, Goodall, & Dixon, 2012; Hubbard,
Amarantidis, & Ward, 2016), and until now tested on simu-
lated data.

We propose an approach with different sensors that are al-
ready available on the trains of NS. To the best of our knowl-
edge the novelty of our work lies in demonstrating the usage
of real-world data collected by passenger trains, to detect ad-
hesion conditions. Recently the NS started a project to send
the information from the train sensors to a central server in
real-time fashion. At the moment we have real-time access to
data of approximately 20 trains for analytics and health mon-
itoring. The main purpose of this research is to investigate
whether it would be feasible to use available sensor data from
the train to monitor the adhesion conditions of the track, while
the train runs in normal service. Consequently, we do not aim
at building a full model in this first assessment. Such model
would benefit the train operators and traffic controllers, but
also the maintainers of the track.

We start in Sec. 2 with outlining the method, followed by the
results in Sec. 3. We continue with a discussion in Sec. 4 and
finalize with a conclusion and plans for future work in Sec. 5
and 6.

2. METHOD

To investigate the possibilities to detect low adhesion from
trains in service with the available sensor information, we run
multiple logistic regression (Cox, 1958) with derived quan-
tities of the train sensor information as predictors and the
drivers reports as labels.

2.1. Available data

We use sensor data from trains that were collected and sent
wireless to the shore (a data center) in real-time. This data is
stored in a database for off-line processing—which we used
for the analyses presented in the current work—but is also
available for real-time analysis. We focus on the following
data that is available for a subset of all trains in the NS fleet:
the location of the train, the requested and applied torque, the
load of the train, the detection of wheel slip and the velocity
of the train. Wheel slip detection occurs when the percent-
age of slip, derived from the difference in angular velocity
between the different wheels of the coach, exceeds a certain
threshold. The load of the train is estimated from the value of
the sensor that is used to regulate the amount of air in the air
springs between the bogie and the coach. This data is time-
stamped and sent in real-time to the shore. Evidently the lo-
cation and time of the train are important, since this allows
taking into account the spatio-temporal dependence of adhe-
sion conditions. The combination of the applied torque and
the load of the train can give insight in the level of adhesion,
since the coefficient of adhesion is defined as:

µadhesion =
FT
FN

, (1)

where FT is the tangential force that is transferred from the
wheel to the rail and FN is the normal force. The adhesion co-
efficient is limited by the friction coefficient of the track. The
combination of applied torque and the detection of wheel slip
can give insight in the amount of force that can be transferred
from the wheel to the rail without wheel slip. In addition, the
amount and variability in torque requested by the train driver
could indirectly be a predictor for adhesion conditions, since
it reflects the drivers behavior, in particular their prudence.
At NS this information is available, in real-time, from about
20 trains during passenger transport service. All information
is updated with a frequency of 1/3 Hz, except for location,
which is available with a frequency of 1/10 Hz.

In order to assess the feasibility of a near real-time monitor
of the track adhesion from available sensor data, we limit the
spatial accuracy to the level of a track section. In this paper
we define a track section as the area around a station, or the
piece of track between two consecutive stations. We only
consider the former, i.e. sections around a train station, and
limit ourselves to cases where a train arrives at and departs
from a train station. A train passage refers to a train passing
a track section at a specific time. We look at the time interval
from 3 minutes before arrival till 3 minutes after departure.

We aggregate the above mentioned data on train passage level
in several different ways. An important quantity to detect low
adhesion conditions is the amount of slip detection per pas-
sage. We look at the total amount if slip in the X seconds af-
ter departure, since then the acceleration and hence the prob-
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Aggregated
quantity

Explanation

sum slip
over adhesion

∑
t∈P

∑
i=1,2

Si(t)mi(t)
τi(t)

total slip
during passage

∑
t∈P

∑
i=1,2 Si(t)

NP

slip in X seconds
after departure

∑
td≤t≤td+X

∑
i=1,2 Si(t)

X

max actual
torque

maxt∈P (maxi=1,2 τ
ac
i (t))|S1,2(t)=0

max requested
torque

maxt∈P (maxi=1,2 τ
rq
i (t))|S1,2(t)=0

max
adhesion

maxt∈P

(
maxi=1,2

τi(t)
mi(t)

)∣∣∣
S1,2(t)=0

Table 1. Aggregated variables. Here t denotes the time in
passage P with NP measurement points and td denotes the
time of departure, i runs over the two coaches that have a
traction installation, S ∈ 0, 1 denotes wheel slip detection if
equal to 1, τ denotes the requested (rq) or actual (ac) torque
and m is proportional to the mass.

ability for slip is the biggest. We also take into account the
total amount of slip. Since prudent driving behavior of the
drivers can avoid slip detection events, even under slippery
conditions, we also look at quantities such as the maximum
of the reached adhesion under the condition that no slip de-
tection occurred, or the maximum of the requested torque.
The maximal actual torque under the condition that no slip
occurs can help in detecting that it is not slippery. We also
look at the sum of the ratio between the slip and adhesion,
which is a quantity inspired by the work of van Steenis (Van
Steenis, 2010). For a precise specification of the quantities,
see Tab. 1. The result of this aggregation is a table containing
for each train passage: the time of the passage, the train num-
ber and several aggregated quantities based on slip detection,
requested and actual torque and a quantity correlated with the
load.

To each train passage we attach a slipperiness-label on the
adhesion condition. These labels originate from the driver’s
observations reported through the current train-shore com-
munication system of alerting for low adhesion conditions
as was outlined in Sec. 1. Note that these labels do not re-
flect the ‘perfect’ truth about adhesion conditions for two rea-
sons. First, drivers do not always notify the traffic controller
of slipperiness, hence the lack of driver observations does not
necessary mean that it is not slippery. The second reason is
the duration of the slipperiness. After a driver communicates
that a track section is slippery, this label remains associated
with that track section for the next 2 hours although adhesion
conditions may return back to normal in less than two hours.
In order to improve the reliability of passages labeled as not
slippery we restricted the not-slippery passages to completely
dry days in July 2017 between 10 a.m. and 4 p.m. In order to

improve the reliability of the slippery- label, we removed pas-
sages where the driver used maximal traction (τ > 6000 Nm)
for at least 4 measurements without experiencing any wheel
slip. Finally we clean our data by removing passages with in-
sufficient measurements (due to not sufficient data transferred
from train to shore) and where the train never reaches a speed
of at least 50 km/h. The latter is removed, because low maxi-
mal speed often means a low acceleration and hence not much
information to detect low adhesion conditions.

2.2. Logistic regression

We limited our research to data from July and October 2017,
which resulted with the above outlined procedure in approx-
imately 1000 passages of which approximately 25% was la-
beled as slippery. To avoid circularity, we divided the pas-
sages into a training and test set so that days with an even
day number were used for training and days with an odd day
number were used for testing. As a general approach, we
train a logistic regression model (Cox, 1958) as implemented
in scikit-learn (Pedregosa et al., 2011) with one or more vari-
ables in the training set and assess the model with the test
set by comparing its predictions to the slipperiness-labels. In
all cases we construct the Receiver-Operator Characteristic
(ROC) curve and quantify each model’s performance using
the Area Under the Curve (AUC).

In Sec. 3.1, we assess to what extent slip detection alone can
predict slipperiness. We use a single variable logistic regres-
sion using the frequency of slip for time intervals of 5, 10,
20, 30 or 30 seconds after departure as well as for the full
duration of the passage. Frequency of slip was computed by
dividing the number of detected wheel slip events by the du-
ration of the time interval.

In Sec. 3.2 we assess the effect of other variables (see Ta-
ble 1), as well as the combination of multiple variables in a
single model. Specifically, we start with comparing AUCs
using a single variable. Then we consider all possible com-
binations of two variables and see which combination yields
the highest AUC. We then extend this to all combinations of
three variables. To find which model is at the same time most
predictive and most simple, we continue this process until we
do not observe an increase of maximum AUC (over all com-
binations of variables) by adding another predictor variable
to the model.

In Sec. 3.3 we consider using predictions from the previous
train on the same location. The rationale is that adhesion con-
ditions usually change slowly over time, so that a prediction
for a certain passage could potentially be enhanced by con-
sidering a prediction from the previous train at the same loca-
tion. To do so, we trained and tested two logistic models that
are both trained on the same training set. The first model is
trained on the quantities of one train passage. Next, the train-
ing set is augmented with the prediction of the first model that
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Figure 1. Area under the ROC curve (AUC) for different ways
of aggregating the amount of slip per passage.

belongs to the previous train on the same location. The sec-
ond model is then trained on the quantities of one train pas-
sage plus the prediction of the previous train passage from
the first model. Both models are then used successively on
the test set: first the test set is augmented with the predic-
tion of the previous train on the same location as predicted by
the first model, and then the second model is used to make a
prediction that considers also the prediction from the previous
passage. Note that no circularity occurs because, by construc-
tion, predictions for the testing data are not at any point based
on the slipperiness-labels in the testing data. Cases when no
train was found for a certain passage in the previous two hours
were excluded as training or testing data.

Our data is unbalanced, with less passages reported slippery.
We also ran our models using balanced data, where a subset
of the non-slippery passages were removed. This resulted in
very similar outcomes, which we do not report in detail here.

3. RESULTS

3.1. Single variable: slip detection

We used logistic regression (Pedregosa et al., 2011) to inves-
tigate the predictive value (as quantified by AUC) of slipperi-
ness aggregated over temporal intervals of different duration.
As illustrated in Figure 1, the total amount of slip detection
during the entire passage has more predictive value than the
amount of slip detection during intervals of 5, 10, 20 or 30
seconds after departure. A monotonic increase of the AUC
is observed when the time span increases from 5 to 30 sec-
onds and to the entire passage. Note that considering only
the amount of slip will not be sufficient for a proper detec-
tion, since (extreme) careful driving behavior can result in no
slip detection at all even though the adhesion conditions are
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Figure 2. Area under the ROC curve (AUC) for different
combinations of variables in two variable logistic regression
model.

low. Therefore, in the next section, we also consider the ef-
fect of other variables. Because slip detection over the full
passage was more predictive than using shorter intervals and
of course the different ways of aggregation are strongly cor-
related, in the next subsection we do not consider variables
based on these shorter intervals.

3.2. Increasing the number of predictive variables

To explore which variable or pairs of variables has most pre-
dictive power, we run a two variable logistic regression for
all single variable and all pairs of two variables (see Table 1).
Figure 2 shows the AUC for the different two variable mod-
els, where elements on the diagonal represent AUC for single
variable models. By inspecting the diagonal we can already
conclude that the following three aggregated quantities are
most informative for slipperiness prediction: total slip during
passage, max adhesion, and max actual torque. The combi-
nation of the first two aggregated quantities turns out to be
the best combination of two variables as can be seen from the
off-diagonal elements in fig. 2.

We also try all combinations of three variables, as well as
all variables together. However, neither of those models per-
forms better than the model based the best two variables. For
simplicity (Ockham’s razor), in the next subsection we only
use those two variables to assess the effect of predictions from
a previous train on the same location.

3.3. Previous adjacent location

In (Van Steenis, 2010) it was observed that when low adhe-
sion occurs, it usually affects consecutive trains within the
next two hours. Therefore we expect that our model would
improve by taking into account a prediction of a recent pre-
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Figure 3. ROC curves without (cyan filled circles) and with
(blue open triangles) taking into account the previous train on
the same location into the logistic regression model.

Algorithm:
slippery normal

Driver: slippery 77.9% 22.1%
normal 22.6% 77.4%

Table 2. Confusion matrix of the best model including the
previous train prediction evaluated at the threshold of 0.132
that gave a good balance between the false positive and the
false negative rates.

vious train passage at the same location (track segment). We
apply a sequence of two models as described in Sec. 2.2. We
compare the performance of the first model alone to the se-
quence of the first and the second model. In both cases the
input quantities are the total amount of slip and the maxi-
mal adhesion. For the second model this is augmented with
the prediction of the previous train. As shown in Figure 3
the ROC curves are shown for both these approaches. The
combined model that includes the prediction of the previous
train (blue open triangles) performs better than the model that
bases its prediction on a single train (cyan filled circles).

The model with the best predictive value is based on the to-
tal slip per passage, the maximal adhesion and the predic-
tion of the previous train on the same location. The model
gives a probability for the passage to be slippery. The thresh-
old should be set to separate the continuous prediction of the
model in slippery and normal. When taking the threshold that
balances the false positive rate and the false negative rate best,
we find that approximately 77% of the passages are correctly
detected, with a false positive rate and a false negative rate of
about 23%, see Tab. 2.

4. DISCUSSION

The results look promising, but some false positives and false
negatives are still present. Regarding the false negatives we
have to mention that it is possible that the track was in fact not
slippery, given the procedure of labeling as was mentioned in
the end of Sec. 2.1. Following the current procedures at the
NS, the driver’s notification of low adhesion conditions stays
in place for a heuristic time period of two hours. However it is
possible that the adhesion conditions have improved earlier.
When we look closely at the speed and traction profile during
these passages, we see in about half of the cases no sign of
slipperiness. However, we often see that the driver still ad-
justs his behavior and accelerates slower than normally. In
these cases it is hard to determine whether the adhesion con-
ditions went back to normal, or that the driver is exactly care-
ful enough not to cause any wheel slip.

A closer look at the false positives reveals that many of those
wrongly diagnosed passages show similar characteristics. In
almost all cases the driver departs slowly by requesting only a
limited amount of torque, which might be due to signals along
the track. Although there is no wheel slip during the passage,
the maximal adhesion during the passage is quite small, since
it is bounded by the requested torque.

It is most difficult to predict passages where the train does
not accelerate to full or nearly full speed due to signals or
speed limits. The reason is that reduced speed in many cases
implies less acceleration and hence less probability for wheel
slip. In these cases it is interesting to take into account the
predictions of the surrounding areas in a similar manner as
we take into account the prediction of the previous train, or to
take the signals themselves into account. These areas could
give more information, since they could be characterized by
a higher acceleration. In this way one takes into account the
spatial smoothness of low adhesion conditions.

To the best of our knowledge few research has been reported
on methods to detect the rail way track adhesion conditions
for all locations nearly real-time. However, an interesting ap-
proach can be found in (Hubbard et al., 2012, 2016), where
the authors develop two methods to detect low adhesion from
trains in normal service. Both methods use the change of the
vehicle dynamics as a function of the adhesion conditions.
One method estimates creep forces based on a linear model
and the Kalman-Bucy filter (Hubbard et al., 2012). The other
method assesses the relationship between the dynamical re-
sponses under different adhesion conditions (Hubbard et al.,
2012). The methods look promising and are explored fur-
ther (Hubbard et al., 2016), although the related RSSB project
has ended (RSSB, 2014). To our best knowledge these meth-
ods are tested on simulated data only, which makes a direct
comparison to our work difficult. However, both our method
and the methods based on the vehicle dynamics (Hubbard
et al., 2012, 2016) have the advantage that all trains could
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contribute to the measurement, since the sensors are either
already available, or quite cheap. This allows for monitor-
ing adhesion conditions nearly real-time with detailed spatial
coverage. Both approaches have in common that they aim
at detecting low adhesion rather than precisely measuring the
adhesion or creep curves, which is the aim of most specially
designed measurement vehicles (Magel, 2017).

5. OUTLOOK

Looking at the speed and traction profile of the false nega-
tives, we saw that some passages indeed did not show any
hint of slipperiness. The driver could depart with maximal
acceleration without slip detections. Also the speed and trac-
tion profiles of the false positive sometimes clearly showed
that it was slippery indeed. Therefore we plan to improve our
model by implementing some physical rules. The following
observations could for example imply slipperiness:

• More than Nmin wheel slip detection events

• Wheel slip detection for traction values smaller than τmin

On the other hand, one could think of observations that imply
that the adhesion conditions are fine, for example:

• The traction is for more than tmin time above τref without
wheel slip.

• Braking with more than τbrref torque is possible without
wheel slip

Apart from improving our model, we also think that physi-
cal rules make it easier for the drivers and traffic controllers
to accept the detection of the model. An other improvement
could be to include data from other train types, in particular
from commuter trains that stop very often. The NS is cur-
rently in the process of incorporating other train types into the
real-time monitoring project, which enables us to use the data
from the data center. Other data sources could also improve
the model, for example the prediction of slippery area’s from
the prediction model used by ProRail, or weather conditions
like humidity, clouds, frost, etc.

In this paper, we tested our model against drivers notifica-
tions, which are known to be neither complete nor always
true, although they are a good first estimate. In the future we
plan to test the model further with a selected group of drivers
that will be asked to pay special attention to slipperiness and
to always report to the traffic controller. In the best case sce-
nario we could ask them for feedback when our model and
their observations do not agree. In this way we improve the
quality of the labels.

6. CONCLUSION

In conclusion we show the feasibility to detect low adhesion
from the traction and wheel slip detection sensors in the train
to warn drivers for slippery conditions. The sensor data is

available for most modern trains, which limits the costs for
implementation. Important information is the amount of slip
that occurred and the maximal adhesion that is used. The
more trains pass a specific track section, the more informa-
tion is available and the more accurate is the detection sys-
tem. Importantly, the sensors are already available in passen-
ger trains so the model can be developed and tested with real-
world data. However, it is important to note that, as long as
the model has false negatives, it can only be used for warning
the drivers for low adhesion. It is not yet strong enough to en-
sure proper adhesion conditions, since a false negative could
result in a safety risk. However, the model can be valuable to
pin-point the locations where the infrastructure manager can
apply friction enhancing measures.
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