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ABSTRACT 

Predictive maintenance requires the identification of the 
parameters to be monitored and sensors to be implemented 
on a system. In industrial companies, usually such goal is 
tackled by implementing sensor and after see if one can 
extract some indicators related to degradation. The lack of 
methodology makes the benefits of predictive maintenance 
to be lower than expected. Indeed, its implementation is 
done by “the rule of the thumb” using some metrics “a 
posteriori” in order to show the relevancy of the 
instrumentation. Hence, a structured approach is required in 
order to define “a priori” the most suitable indicators to be 
relevant for degradation monitoring and related 
instrumentation to be implemented. Thus, the paper presents 
a methodology based on a coupled approach of FMECA and 
Hazard Operability analysis (HAZOP) which aim is to 
contribute to the deployment of predictive maintenance 
strategies by clearly identify pertinent indicator. This 
approach is based on the formalization of concepts of 
knowledge which permit to constitute the first pillars of 
predictive maintenance approach. The formalization step 
leads to promote meta-model and reference model of 
knowledge. The feasibility and the interests of such 
approach are shown on the case of machine tool GROB 
G520 located in RENAULT Cléon Factory. It consists in 
particularizing the reference model proposed to identify 
automatically and in a more efficient the right 
indicators/parameters on which the predictive maintenance 
of this machine tool should be based. 

1. INTRODUCTION 

In industrial companies, predictive maintenance aims at 
forecasting process degradation or process deviations to 
perform maintenance action just in time allowing to 
anticipate process/asset failure. It avoids costly downtime, 
reduces maintenance costs and transforms “unplanned 
stops” to “planned ones” for a more efficient production 
optimization (Roy, Stark, Tracht, Takata, & Mori, 2016). In 
that way, predictive maintenance is based on parameter 
monitoring related to asset, process or product conditions. 
These parameters are linked to degradation mode 
assessment in order to create health indicators. The 
evolution of these health indicators can be then determined 
by a prognostic process to provide remaining useful life 
(RUL) parameter usable to take adequate decision with 
regards to process/product future changes. This vision of 
predictive maintenance is those expected in Renault 
factories such as Cleon one in the way to move from “fail 
and fix” maintenance strategies to “predict and prevent” 
ones.  

Nevertheless, existing approaches does not completely 
fulfill the industrial need starting with the definition of 
relevant parameters to be monitored and indicators 
elaboration for degradation monitoring up to the deployment 
of a solution which could be used in a huge number of 
production systems. Hence, a relevant challenge is to 
propose a structured approach, dedicated to industrial 
application, for the definition and development of pertinent 
indicators on which the predictive maintenance is founded 
(Laloix, Iung, Voisin, & Romagne, 2016). 

To face this challenge, the paper proposes a knowledge 
meta-modeling integrating functioning/dysfunctioning 
concepts as well as causality relationships to model the 
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degradation progress into the system. This meta-modelling 
based on UML (Unified Modeling Language) will be the 
core from which an advanced and efficient predictive 
maintenance can be constructed for providing relevant 
indicators as inputs to decision-making process. Thus the 
originality of this proposal is (a) to formalize all the 
knowledge concepts, their attributes and their relationships 
for supporting the link between degradation at different 
system abstraction level in consistence with specialized 
well-known approaches, (b) to offer, by means of the meta-
model, a high degree of genericity allowing to use it for 
several industrial application classes, and finally (c) to 
provide to Renault, for the machining center application 
class, a reference model (obtained by meta-model 
instantiation) to promote predictive maintenance policies on 
this application class.  

Regarding this originality, the section 2 introduces the 
problem statement on indicator definition from relevant 
monitoring parameters. It leads to isolate limits of these 
current approaches. In section 3, we propose a meta-model 
based on functional and dysfunctional concept of 
knowledge. This meta-model is instantiated in section 4 to 
create a reference model for the application class of 
machining center. Then, the relevance of the meta-model 
and the reference model are shown, in section 5, on linear 
axis subsystems of the GROB BZ560 machining center 
implemented in Cleon factory. This application highlights 
the need of methodology for industrial companies to 
identify and select relevant parameters to be monitored for 
manufacturing system health assessment. Finally, section 6 
proposes some conclusions and perspectives. 

2. PROBLEM STATEMENT ON INDICATOR DEFINITION IN 
THE FRAME OF PREDICTIVE MAINTENANCE 

Development of predictive maintenance strategies implies 
for decision makers to possess indicators representing asset 
degradation. These indicators are considered as a snapshot 
of the system condition/degradation in comparison to a 
reference, considering various aspects such as 
performances, environment etc. (Rizzolo, Abichou, Voisin, 
& Kosayyer, 2011). An important issue, in manufacturing 
context, is the identification of parameters to be monitored 
on the asset and the elaboration of the degradation 
indicators. Moreover, such approaches have to consider 
industrial deployment aspect, so being able of genericity and 
scalability. 

Several methods based on dysfunctional analysis (e.g. 
identification of degradation modes) are already operational 
(Renu et al., 2016). For example, in relation to degradation 
knowledge, (Catelani et al., 2015) identified monitoring 
parameters for each dysfunctional mechanism in case of 
failure mode. In the same way, (Atamuradov, Medjaher, 
Dersin, Lamoureux, & Zerhouni, 2017) proposed such 
analysis to determine parameters to monitor. It corresponds 

to the first step of a global 4th steps methodology dedicated 
to ease the implementation of predictive maintenance 
strategies in industry. The first consists in critical 
component analysis bringing the second, the selection of 
appropriate sensor for condition monitoring. The third 
represents the prognostics feature evaluation under data 
analysis and finally, the fourth, the prognostics 
methodology and tool evaluation matrices derived from 
predictive maintenance literature. (Tiddens, Braaksma, & 
Tinga, 2018) proposed to examine economic and technical 
factors to select the suitable component to monitor, after the 
reduction of candidate by criticality classification. (Verl, 
Heisel, Walther, & Maier, 2009) estimated process 
degradation thanks to wear parameters monitoring and 
(Efthymiou, Papakostas, Mourtzis, & Chryssolouris, 2012) 
has formalized this monitoring process in predictive 
maintenance framework from knowledge management. 
About predictive maintenance indicator, (Mourtzis, 
Vlachou, Milas, & Xanthopoulos, 2016) proposed fusion of 
sensing information based on process information and 
operators reports. Even if monitoring parameters are 
identified and indicators determined, they are limited to a 
specific application class of process. 

To face the genericity and scalability issues, some 
approaches already exists. For example, (Iung, Medina-
Oliva, Weber, & Levrat, 2012) combine functional and 
dysfunctional concepts of knowledge supported by 
Probabilistic Relational Model (PRM). The concepts are 
extracted from FMEA (Failure Mode and Effect Analysis) 
and HAZOP (Hazard and Operability study) methods. 
Nevertheless, it does not consider the monitoring parameter 
identification and thus sensing strategy.  On the same basis 
of FMEA study, (Renu et al., 2016) identify the impact of 
process degradation on product quality through a knowledge 
based system. The genericity and scalability is ensured by 
knowledge based FMEA approach. In the same way, 
(Rehman & Kifor, 2016) propose a reusable and scalable 
tool based on ontology to support FMEA knowledge. Also, 
(Candea, Kifor, & Constantinescu, 2014) face this issue by 
the proposition of case-based reasoning approach. The 
proposed knowledge system is supported by FMEA-driven 
software and is deployed on a manufacturing context. 
Nevertheless, each of these approaches does not identify 
sensing solution in the purpose to constitute indicators as 
input of decision making process.  

Thus, the existing approaches are not fully satisfactory 
leading to promote a challenge for a structured approach 
based on the identification of relevant monitoring 
parameters to constitute and provide indicators in the 
predictive maintenance framework in industrial context 
(Laloix et al., 2017). 
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3. PROPOSAL OF A META-MODEL TO SUPPORT INDICATOR 
DEFINITION 

To face with the previous issue, the contribution proposed 
aims at developing a meta-model formalizing all the generic 
knowledge concepts, their attributes and their rules required 
to identify relevant parameters to monitor for the 
elaboration of health indicators. This formalization, based 
on UML (MEGA tool) is integrating:  

- Knowledge concepts of process functional analysis to 
identify the basic items on which the meta-model is 
constructed, 

- Knowledge concepts of process dysfunctional analysis 
to identify, from relevant FMEA and HAZOP methods, 
the items to support causality from degradation to 
deviation (Laloix et al., 2017) 

- Knowledge concepts to support extension of these two 
methods to finalize the link between causality principle 
and the health indicator item.    

3.1. Knowledge concepts of functional analysis 

The functional modeling of an industrial process consists 
most of the time, in formalizing, by qualitative causal 
relationships, the interactions between the functions 
performed at each level of the process until the elementary 
level (elementary functions). In that way, this modelling can 
be supported by tool such as SADT (Structured Analysis 
and Design Technique) in which semantic rules can be 
added in consistent with system theory principles (Medina-
Oliva, Iung, Barberá, Viveros, & Ruin, 2012). Thus, the 
analysis corresponds to a process decomposition in 
functions and sub-functions until elementary functions 
supported by technological mechanism. The global function 
is associated to the global system (higher level of 
abstraction), and each function is associated to a sub-system 
until the component level. A system owns specific attributes 
such as its name, its class, its type … Each (sub)function 
achieves finality. It consumes Input flows and produces 
Output flows materializing, in sense of system theory, 
knowledge related to the finality, the know-how, the 
energies, the resources, the information … (Medina-Oliva et 
al., 2012). 

Each flow is characterized by a quantity of objects per unit 
of time, and each flow and object are characterized by 
properties (e.g. weight, length for the final part being one 
object among the flow of produced parts). Functions are 
linked through the chain of input/output flows allowing to 
propagate the effect of function/sub-system degradation. A 
part of the UML formalization of the previous concepts, 
attributes and relationships is shown in Figure 1-A. 

	
 

Figure 1. Extract of the meta-model related to functional (A) 
and dysfunctional (B) knowledge concepts 

3.2. Knowledge concepts of dysfunctional analysis 

From the concepts of system, function, and flow, related to 
functional aspect, it is now necessary to study dysfunctional 
one. Dysfunctional analysis is done by considering concepts 
of approved FMEA and HAZOP methods knowing that 
FMEA is oriented toward technical aspects (machine, 
component) and leads to the identification of degradation 
and failure mode, while HAZOP is focused on flow 
deviation.  

Knowledge concepts introduced by FMEA method 
represent identification of failure modes and degradation 
ones (in the frame of predictive maintenance) attached to 
each system/sub-system level. Root causes which generate 
such failure or degradation are identified as well as the 
system consequences, and the detection means (Candea et 
al., 2014). Quantification of the impacts on the system 
finality is also evaluated. In complementary way, HAZOP 
method is introducing knowledge concepts such as flow and 
properties deviations (e.g. less, more) in regards with 
function/sub-functions, and consumed/produced flows. 
Criticality of flow deviation consequences is also evaluated. 
Root causes are identified, as well as detection means. 

Association between these concepts of degradation mode 
and flow/property deviation is a first step on linking the 
product/process joint consideration. It is formalized by 
causality relationship (Figure 1-B). Moreover, the notion of 
criticality is added to the meta-model through quantification 
of the relationships. It represents the importance of 
degradation mode or deviation mode on the process and is 
evaluated by ranking criteria. This ranking appears on 
degradation mode (DM) and flow deviation (FD) 
relationships attributes. In compliance with causality 
relationship, a flow deviation can trigger another flow 

A	

B	
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deviation (causality_FD_FD), but also another degradation 
mode (causality_FD_MD). As well as a degradation mode 
can entail other degradation mode (causality_DM_DM) or 
flow deviation (causality_DM_FD). 

3.3. Knowledge concepts of FMEA and HAZOP 
knowledge extension 

3.3.1. Monitoring parameters 

The strategy to identify the monitoring parameters is 
directly issued from functional and dysfunctional causality 
relationship. Thus, monitoring parameters can be both 
focused on the performance associated to the function and 
its deviation or on the degradation/failure mode related to 
the component. Furthermore, this causality formalizes a real 
link between degradation mode and flow deviation. In 
general, the monitoring of a particular failure/degradation 
mode can be mainly related to: (a) the degradation 
mechanism itself, (b) the causes of the degradation and (c) 
the effects of the degradation mode. In relation to this 
monitoring, parameters can focus on degradation for (b), 
physical mechanism for (a) and flow property measurement 
for (b) and (c). Consequently, monitoring parameters 
represent either the symptoms of the degradation (e.g. 
temperature, vibrations), the system performance (via output 
flow properties) and resulting effects on upstream or 
downstream degradation mechanism or function properties 
(e.g. torque rise, output reduction). Formalized relationship 
between classes related to these concept of knowledge is 
illustrated Figure 2. 

3.3.2. Health indicators elaboration 

From the identification and selection of monitoring 
parameters, health indicators are elaborated with more 
semantics (at different abstraction levels). Indeed, health 
indicator is mainly defined as an aggregated index assessing 
a current global state in comparison to a nominal one, 
considering various aspects such as performances, on-going 
degradation, environment etc. (Rizzolo et al., 2011). So, the 
elaboration process is: elaboration of degradation indicators 
based on the analysis and normalization of the failure mode 
monitoring parameters, elaboration of performance 
indicators based on the analysis and normalization of 
monitoring parameters related to system performance; then, 
combination/aggregation of the 2 former classes of 
indicators to get the (system/subsystem) health indicators by 
considering also the process parameters (e.g. type of 
product, tool n°, program n°). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Extract of the meta-model related to FMEA and 
HAZOP extensions (complementary part of Figure 1) 

Thus, the current global meta-model is composed of all the 
necessary concepts, attributes and relationships to generate 
health indicators of combined process/product 
consideration. As this meta-model is fully generic and very 
conceptual, it was decided, in the frame of Renault, to 
generate (by instantiation procedure), reference models 
more adapted and usable for different classes of 
machine/systems encountered in Renault factories. The first 
one was performed for the machining center application 
class. 

4. REFERENCE MODEL DEFINITION FOR MACHINING 
CENTER APPLICATION CLASS 

The machining center reference model (an extract is 
presented Figure 3) has to contain all the knowledge 
expected to be exploited for identifying relevant parameters 
to monitor in the way to implement predictive maintenance 
for this category of machine. The reference model is created 
from instantiation of all meta-model items (e.g. concepts). 
This results in a high capacity of model portability from a 
machining center case to another. Indeed, machining center 
share the same upper abstract level subsystems such as 
electro spindle, axis, etc. Only when the level comes to 
technical ones, the models significantly differ. 

Instantiation procedure (made also on MEGA tool) starts by 
creating, from system class, a class machining center. 
Machining center function corresponds to transform part, 
and represents an instance of function class. A system can 
only perform one function, whereas a function can be 
performed by different systems. For instance, the only 
finality of machining center is to transform part, but this 
later can also correspond to the finality of stamping press. 
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Machining center function consumes and produces flows. 
Related instantiated input flows are raw part, cutting tool, 
energies, and output flows are transformed part and metal 
removal. System class is composed by 0 to n subsystem 
classes. Instantiation of subsystem class leads to create, at 
least, linear axis, rotational axis, electro spindle unit and 
tool change unit classes. Each of these machining center 
subsystems performs a function corresponding to sub-
function class instantiation leading respectively to the 
following: to displace cutting tool, to rotate work piece, to 
rotate cutting tool, to provide new tool. Then the 
instantiation procedure is continued by the identification of 
degradation mode and flow deviation related to 
technological aspect and associated flows (and their 
attributes). Finally, the operation is performed until defining 
the occurrences of the health indicator class (and also the 
related attributes). 

 
Figure 3. Extract of the machining center reference model 

Thus, the machining center reference model is elaborated to 
be the common generic model able to serve for the whole 
diversity of machining centers inside and/or outside Renault 
context. 

5. PARTICULARIZATION OF THE MACHINING CENTER 
REFERENCE MODEL TO GROB BZ560 MACHINING 
CENTER 

This reference model has been used and validated in the 
Renault Cleon Factory for the case of the specific GROB 
BZ560 machining center (a 5 axis, dual-spindle).  It 
constitutes a first step for implementing an advanced 
predictive maintenance on this machine knowing that the 
development of this specific model results from a 
particularization of the reference model. A focus has been 
done on the modelling of linear axis subsystems (Figure 4) 
to identify relevant indicators to be monitored. These later 
are parallel axis Z1 and Z2 involved in the spindle linear 
displacement (and so cutting tool linear displacement) used 
to machine the work piece. These axis play a central role in 
the machining process, ensuring spindle maintaining or 
displacement during machining operation according to 

machining operation type (drilling, milling, boring). Both 
axis Z1 and Z2 realize the same operations/process and 
when one is not operational (cutting tool breakage, lack of 
work piece…), the other does not run.  

 
Figure 4. GROB BZ560 kinematic ( linear axis Z1 and Z2 
(Altintas, Verl, Brecher, Uriarte, & Pritschow, 2011)) 

5.1. GROB BZ560 functional and dysfunctional analysis 

Linear axis is an occurrence of machining center subsystem 
class. It performs the cutting tool displacement through the 
displacement of the table where is fixed the spindle 
(function: to displace linearly spindle). It is controlled by 
process orders (position requirements), consumes electrical 
power, and produces cutting tool linear displacement and 
position information. Linear axis function is decomposed 
into several elementary functions such as (i) to transform 
electrical energy into rotational mechanical energy, (ii) to 
transmit motor shaft rotation to ballscrew, (iii) to guide 
ballscrew rotational movement, (iv) to transform ballscrew 
rotational movement into table linear displacement, (v) to 
monitor table position and (iv) to guide table linear 
displacement. Each of these elementary functions is 
respectively supported by (i) electrical motor, (ii) coupling, 
(iii) bearings, (iv) nut, (v) sensors and (vi) guides.  

Focusing on the function to guide table linear displacement, 
input flow is table linear displacement (output flow of the 
function to transform ballscrew rotational movement into 
table linear displacement), characterized by position and 
time properties. The output flow is represented by guided 
displacement, characterized by spatial positioning precision 
and guiding resistance properties. 

Based on the functional analysis, dysfunctional analysis can 
be performed. In that way, for each component (e.g. guides), 
related failure modes are identified (e.g. guides vibrations) 
as well as output flow properties deviation (e.g. less spatial 
positioning precision, more displacement resistance.). Then, 
the causes are developed in link with the component state 
and the deviation of the input flow properties. For instance, 
guides vibration main causes can correspond to lack of 
lubricant, clearance between guides and table, pollution, or 
guides wear). It leads to isolate output flow properties 
deviations (e.g. less spatial positioning precision), but also 
the potential impacts on the output flow properties of 
upstream function (e.g. more engine torque related to the 
function to transform electrical energy into rotational 
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mechanical energy). All this knowledge is easily 
implemented and updated by maintenance expert towards 
graphical interfaces, on the basis of general system 
knowledge provided by the reference model (Figure 5). 
These interfaces are informational forms created directly 
from the processes associated with the meta-model and 
reference model (e.g. processes related to the relation-ships, 
the occurrences).  

 
Figure 5. User interface dedicated to FMEA/HAZOP 
concepts used by maintenance team to implement specific 
machine database 

Finally, guides degradation materialized by spatial 
positioning precision output flow property leads to upper 
abstraction level impact towards the deviation of 
displacement precision. The resulting effect corresponds to 
the increase of position error. 

From the identification of such flow property deviation, the 
definition of health indicator can be addressed, considering 
the monitoring parameters and industrial context 
(operational condition, environmental condition, etc.; See 
Figure 2). 

5.2. GROB BZ560 relevant indictor to support 
predictive maintenance 

Indeed, from functional and dysfunctional instantiated 
knowledge (results of the step explained in previous 
section), it is then necessary to identify the representing 
physical parameter, the sensing solution, the signal 
processing, to consider process context and finally define 
health indicator elaboration. 

Regarding position error, the related physical parameter 
corresponds to axis position. Related sensor solution and 
signal processing are internally managed by machining 
center. Indeed, this information is necessary for its 
functional needs. The corresponding process context 
represents for instance work piece diversity 1 and work 
piece diversity 2 (e.g. diversity means different types of 

cylinder block). Associated algorithm to achieve the 
position error deviation monitoring represents position error 
algorithm. Position error e(k) is equal to the difference 
between the real position xr(k) and targeted position x(k) at 
each control interval (k) (Altintas et al., 2011). Finally, 
position error e(k) value is cumulated by cycle. Cumulated 
position error per cycle corresponds to a relevant health 
indicator for Z1 and Z2 axis. Such indicator has been 
calculated for Z1 axis and Z2 axis on two months datasets 
(representing 1500 machining cycles), considering two 
diversities (diversity 1 and diversity 2) of machined part. 
The obtained results are depicted in Figure 6 and Figure 7. 
The comparison between both distribution highlights an 
early deviation of Z2 axis indicator in comparison with Z1 
axis. Indeed, distribution of Z1 axis is centered on a single 
value, and mean and wide are considered as nominal state, 
whereas Z2 axis indicator distribution appears bi-modal. 

Concerning less positioning precision related to Z1 axis 
guides and Z2 axis guides dysfunctional aspects, a 
corresponding physical parameter is vibration. This later is 
monitored by sensors such as accelerometers located on Z1 
and Z2 guides. Accelerometers provides radial vibration 
acceleration information, corresponding to processed 
signal. The relevance of such signal is ensured by the 
consideration of process context (i.e. cutting tool rotation 
speed, cutting tool lifetime, work piece diversity). Finally, 
based on processed signal and process context, health 
indicator is elaborated. It represents both Z1 guides and Z2 
guides temporal signals during machining phase, filtered on 
cutting tool rotation frequency to remove noise (i.e. 
vibration indicators). Both axes work in the same process 
conditions and their cutting tools have the same lifetime. 
The vibration indicators are presented Figure 5. It reveals 
that amplitude of acceleration signal of Z2 axis is more 
important than Z1 axis, meaning that Z2 axis guide stability 
is more degraded than Z1 axis. 

 
Figure 5. Z1 axis and Z2 axis vibration indicator 

Each degradation mode or flow deviation is being able to be 
monitored, either by their causes, or by the degradation 
modes or flow deviations themselves or by the resulting 
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effects. Based on causality relationship identified through 
the dysfunctional analysis, sensing strategy can be operated 
at component level, or subsystem level according to the 
desire level of precision.  

The degradation is monitored by two different ways. First, 
the occurrence of linear axis degradation is observed by 
component degradation monitoring (i.e. guides 
degradation). The advantage is the ability to detect early 
degradation mechanism and to directly focus on the 
degrading component. Nevertheless, in industrial context, 
monitoring the component level of manufacturing systems 
is not economically relevant. A solution can be the 
monitoring of the degradation at subsystem level through a 
subsystem degradation indicator. This corresponds for linear 
axis to position error indicator. A deviation of such indicator 
means a degradation of axis positioning precision.  
However, monitoring of this type of indicator does not 
indicate the degrading component.  

To overcome this limit, a solution is the fusion of indicators 
merging information coming from both component and 
subsystem degradation. 

 
Figure 6. Z1 axis position error distribution 

 
Figure 7. Z2 axis position error distribution 

6. CONCLUSION 

The paper proposed an UML-based meta-model formalizing 
all concepts of knowledge required to support definition of 
pertinent indicators to be monitored for implementing 
advanced predictive maintenance in manufacturing industry. 
More precisely, the concepts are representative of 
functional/dysfunctional analysis, and extension of the 
FMEA and HAZOP methods. This meta-model has been 
instantiated to the class of machining center to offer Renault 
with a generic basis of knowledge potentially usable for 
different kind of machines. In that way, a particularization 
of the reference model has been done to specific GROB 
BZ560 machining center and more specifically to the linear 
axis sub-system. The particularization step showed the 
feasibility and relevance of the reference model to aid in the 
definition of degradation indicators in a very consistent way.   
The work in progress is the development of the reference 
model for all the machining center but also the development 
of other reference models in relation to other Renault classes 
of manufacturing systems.  

Future work will be the definition and implementation of 
algorithms to aggregate degradation indicators, leading to 
the construction of a global health index and finally 
monitoring the system and sub-system health. 
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