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ABSTRACT 
In the era of Internet of Things and Industry 4.0, the demand 
for condition monitoring of rotating machinery in industry 
becomes ever more significant. In addition to the steps of 
fault detection and diagnosis, the accurate estimation of the 
Remaining Useful Life (RUL) of machinery components 
may provide significant economic merits, optimizing the 
maintenance and avoiding potential human casualties and 
environmental pollution. During the last decades, a number 
of methodologies have been developed in the area of 
Prognostics and Health Management (PHM), categorized 
mainly in three groups, the physics based, the data-driven and 
the hybrid approach groups. Physical models are related to 
the load, the speed, the material, the geometry, etc. of a 
specific component and are able to make accurate RUL 
predictions but at an expensive computation cost and high 
complexity. In order to facilitate the applicability, a number 
of data-driven methodologies have been proposed including 
various versions of Kalman and Particle Filters. Among 
others, the Bayesian inference based Particle Filter provides 
high prediction accuracy for complex nonlinear systems 
utilizing little amount of data compared to machine learning 
techniques. The Monte Carlo step of the method is optimal to 
deal with the stochastic degradation process of bearings and 
appears to be able to handle any form of noise distribution. 
However, the traditional resampling methods frequently 
present the problem of particle leanness which heavily 
influences the performance of PF. The existing prediction 
methodologies are mainly based on classical diagnostic 
features, e.g. RMS, reaching a limit of efficacy. In order to 
overcome the abovementioned bottlenecks, an advanced 

prognostic methodology is proposed based on PF, the 
systematic resampling method and the Cyclic Spectral 
Coherence (CSCoh). The systematic resampling is proposed 
in order to address the problem of impoverishment. Moreover 
the CSCoh has been recently proposed as a powerful tool 
revealing weak modulations masked in the signals. The 
integration of the CSCoh over the frequency leads to the 
Enhanced Envelope Spectrum and a diagnostic feature is 
estimated based on the sum of the amplitudes of three 
harmonics of the characteristic fault frequencies of rolling 
element bearings. The methodology is tested and evaluated 
on experimental vibration signals, while the performance is 
quantitatively evaluated using prognostic metrics in the 
consideration of accuracy, precision and convergence.  

1. INTRODUCTION 

In the era of Industry 4.0 (Ferreiro et al. 2016), Condition 
Monitoring (CM) is attracting significant industrial attention. 
On one hand, the obtained CM information reflects the 
operation status of machinery and helps to identify the 
existing faults, reducing further the breakdown time and 
avoiding severe economic loss. On the other hand, due to the 
development of sensor technology and advanced 
computation power, large amount of data of production 
processes are able to be collected, which ranges from the 
level of single machine component to the system. Moreover, 
the analysis of the gathered data contributes to the 
optimization of the production. In the last several decades, 
the application of CM was mainly focused on the level of 
fault detection and diagnosis. Today, predictive maintenance 
is widespread discussed and integrated into the framework of 
Prognostics and Health Management (PHM). Prognostics 
allows for the estimation of the Remaining Useful Life (RUL) 
of a component from the current time till the End Of Life 
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(EOL). Therefore, proactive actions such as specific 
maintenance planning (ordering and preparation of 
components etc.) are able to be scheduled beforehand. 

Rolling Element Bearings (REBs) are frequently utilized in 
machines in order to transfer relative movements and forces. 
REBs often lead to machine breakdowns and as a result the 
prediction of the RUL of REBs plays a significant role in the 
CM of equipment. The state of art can be mainly categorized 
into three groups, the data-driven, the physics-based and the 
hybrid approach. The physics-based approach requires 
extensive knowledge about the failure mechanism and is 
related generally with a number of factors (Bolander et al. 
2016) such as the fault type, the material, the geometry 
properties, the speed and the load. The Paris law and the 
Forman law are typical physical models, indicating the rate 
of crack growth and have been broadly studied. A reliable 
physics model achieves more accurate performance, however, 
its configuration is often designed for a specific fault type and 
application. Therefore, the data-driven methods have been 
proposed with the merit of flexibility. An approximation 
model is directly estimated from the experimental data, 
without the necessity of complex modeling. Wu et al. (2016) 
classified the data driven methods in the Machine Learning 
methods (ANN, Deep Learning, etc.), the Filter methods 
(Kalman Filter, Particle Filter) and the Stochastic Process 
methods (Gaussian, Wiener). In addition, the hybrid 
approach, combining data-driven and physics models, could 
be a beneficial choice in the view of reliability and accuracy. 
However, under the consideration of applicability, the data-
driven approach is becoming the mainstream nowadays and 
the prediction performance is improved gradually as well. 

In the case of highly nonlinear systems, the Particle Filter (PF) 
methods have great potential value in comparison to others in 
the aspect of the data amount, the accuracy and the 
computation cost. Li et al. (2017) investigated the RUL 
prediction of bearings based on a new PF (combined with 
Genetic algorithms) and a time varying autoregressive model. 
The performance of PF is more accurate than a Support 
Vector Machine based prognostics method using the RMS 
and the Peak Value as features. Deutsch et al. (2017) selected 
RMS as feature and fused the PF with deep learning in order 
to estimate the RUL. Li et al. (2015) proposed an exponential 
degradation model for the PF and studied the selection of the 
first prediction point using the features of RMS and Kurtosis. 
The proposed approach demonstrated interesting results 
based on the validation data. Qian et al. (2015) enhanced the 
PF with a back propagation neural network and used RP 
entropy as a feature leading to a prediction superior to a 
Support Vector Regression. 

However, a number of issues are still confronted and worth 
more exploration in the current framework, e.g. the decision 
of the start prediction point, the threshold setting to the EOL, 
the parameters tuning, the particle degeneracy, the decision 
of particle number, the data model selection, etc. Taking into 

consideration the existing bottlenecks, this work presents a 
methodology for the estimation of the RUL of REBs based 
on the Enhanced Particle Filter and the Enhanced Envelope 
Spectrum (EES), which is derived from the Cyclic Spectral 
Coherence (CSCoh) (Antoni, 2007). The rest of the paper is 
organized as follows. The theory of Particle Filter as well as 
the Systematic Resampling (Li et al., 2015) are explained in 
detail in section 2. Subsequently, an advanced monitoring 
feature based on the EES is introduced in section 3. 
Furthermore, a general REBs RUL estimation procedure 
based on Cyclostationary monitoring features and Enhanced 
Particle Filter is presented in section 4. Moreover, a number 
of performance metrics are presented in section 5 in order to 
evaluate quantitatively the results of the RUL estimation. The 
experimental data and the analysis of the prediction results 
are discussed respectively in section 6 and section 7. The 
paper is closing with some conclusions. 

2. PARTICLE FILTER 

As a typical type of Bayesian estimation method, Particle 
Filter (PF) uses a number of particles to estimate the posterior 
distribution of a stochastic process with random perturbation. 
In this section, the theory of Particle Filter and the Systematic 
Resampling are briefly presented. 

2.1. Classic Particle Filter 

The Classic Particle Filter (CPF) is particularly useful for the 
estimation of a nonlinear dynamic system with non-Gaussian 
noise. The principles of CPF is based on the Bayesian theory 
and different sampling methods, including the Monte Carlo 
Sampling (MCS), the Importance Sampling (IS), the 
Sequential Importance Sampling (SIS) and the Sequential 
Importance Resampling (SIR). Each of them is briefly 
explained as follows. 

The Bayesian theory includes prediction and update steps. In 
the prediction step, the priori Probability Density Function 
(PDF) of the 𝑘𝑘𝑡𝑡ℎ predicted state 𝑥𝑥𝑘𝑘 is expressed with the help 
of the posteriori knowledge (the measurements 𝑧𝑧1:𝑘𝑘−1), that 
is  𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘−1). Afterwards, the posteriori PDF 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) 
is updated when the 𝑘𝑘𝑡𝑡ℎ measurement 𝑧𝑧𝑘𝑘is available. 
According to the logic of MCS, the state 𝑥𝑥𝑘𝑘 is approximated 
by a set of particles 𝑥𝑥𝑘𝑘𝑖𝑖 , 𝑖𝑖 = 1 …𝑁𝑁, which are sampled from a 
certain probability distribution. The posteriori probability of 
Bayesian estimation is able to be approximated with MCS, 
𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) ≈ 1

𝑁𝑁
∑ 𝛿𝛿(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘𝑖𝑖 )𝑁𝑁
𝑖𝑖=1 , where 𝛿𝛿 denotes the Dirac 

delta function. Each particle has the same weight 1
𝑁𝑁

. 

In order to overcome the limitation of the normal distribution 
assumption of MCS the IS has been proposed. The posteriori 
PDF can be rewritten as  

              𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) =
𝑝𝑝(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘)
𝑞𝑞(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) 𝑞𝑞

(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘)   
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                   =
𝑝𝑝(𝑧𝑧1:𝑘𝑘|𝑥𝑥𝑘𝑘)𝑝𝑝(𝑥𝑥𝑘𝑘)
𝑝𝑝(𝑧𝑧1:𝑘𝑘)𝑞𝑞(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) ∙ 𝑞𝑞

(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) 

=
𝑤𝑤𝑘𝑘(𝑥𝑥𝑘𝑘)
𝑝𝑝(𝑧𝑧1:𝑘𝑘) ∙ 𝑞𝑞

(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘) 

           =
𝑤𝑤𝑘𝑘(𝑥𝑥𝑘𝑘) ∙ 𝑞𝑞(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘)

∫𝑤𝑤𝑘𝑘(𝑥𝑥𝑘𝑘) ∙ 𝑞𝑞(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘)𝑑𝑑𝑥𝑥𝑘𝑘
 

  =
𝑤𝑤�𝑘𝑘(𝑥𝑥𝑘𝑘)

∫𝑤𝑤�𝑘𝑘(𝑥𝑥𝑘𝑘)𝑑𝑑𝑥𝑥𝑘𝑘
                                       (1) 

where,  

     𝑤𝑤𝑘𝑘(𝑥𝑥𝑘𝑘) = 𝑝𝑝�𝑧𝑧1:𝑘𝑘�𝑥𝑥𝑘𝑘�𝑝𝑝(𝑥𝑥𝑘𝑘)
𝑞𝑞�𝑥𝑥𝑘𝑘�𝑧𝑧1:𝑘𝑘�

∝  𝑝𝑝�𝑥𝑥𝑘𝑘�𝑧𝑧1:𝑘𝑘�
𝑞𝑞�𝑥𝑥𝑘𝑘�𝑧𝑧1:𝑘𝑘�

        (2) 

Therefore, the N particles are sampled from the importance 
distribution 𝑞𝑞(𝑥𝑥𝑘𝑘|𝑧𝑧1:𝑘𝑘), and the corresponding weights are 
normalized following Eq. (3): 

   𝑤𝑤�𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 � = 𝑤𝑤�𝑘𝑘(𝑥𝑥𝑘𝑘
𝑖𝑖 )

∑ 𝑤𝑤�𝑘𝑘(𝑥𝑥𝑘𝑘
𝑖𝑖 )𝑁𝑁

𝑖𝑖=1
        (3) 

The recursive equation of the particles weights for 
𝑞𝑞(𝑥𝑥0:𝑘𝑘|𝑧𝑧1:𝑘𝑘) is thus written as:  

            𝑤𝑤𝑘𝑘𝑖𝑖 ∝
𝑝𝑝�𝑥𝑥0:𝑘𝑘

𝑖𝑖 �𝑧𝑧1:𝑘𝑘�

𝑞𝑞�𝑥𝑥0:𝑘𝑘
𝑖𝑖 �𝑧𝑧1:𝑘𝑘�

= 𝑤𝑤𝑘𝑘−1𝑖𝑖 𝑝𝑝�𝑧𝑧𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑝𝑝�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 �

𝑞𝑞�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥0:𝑘𝑘−1
𝑖𝑖 , 𝑧𝑧1:𝑘𝑘�

       (4) 

The importance distribution 𝑞𝑞(𝑥𝑥𝑘𝑘|𝑥𝑥0:𝑘𝑘−1, 𝑧𝑧1:𝑘𝑘) in Eq. (4) is 
related with all the previous measurements and results in 
heavy computation cost for each measurement. In order to 
reduce the computation time SIS has been proposed and the 
𝑞𝑞 is assumed to be dependent only on the previous state 𝑥𝑥𝑘𝑘−1 
and the current measurement 𝑧𝑧𝑘𝑘. Then, the weight calculation 
of Eq. (4) is transformed as: 

                       𝑤𝑤𝑘𝑘𝑖𝑖 ∝ 𝑤𝑤𝑘𝑘−1𝑖𝑖 𝑝𝑝�𝑧𝑧𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑝𝑝�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 �

𝑞𝑞�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 , 𝑧𝑧𝑘𝑘�
       (5) 

However, the main issue of SIS lies in the problem of 
particles degeneracy. The number of ‘effective’ particles 
decreases after some certain recursive steps and, in other 
words, the weight of the most particles becomes negligible. 
Hence, the resampling duplicates the high weight particles 
and replaces the lower ones. The importance distribution 
𝑞𝑞(𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘−1, 𝑧𝑧𝑘𝑘) is generally chosen as 𝑝𝑝�𝑥𝑥𝑘𝑘𝑖𝑖 �𝑥𝑥𝑘𝑘−1𝑖𝑖 �, and then 
𝑤𝑤𝑘𝑘𝑖𝑖 ∝ 𝑤𝑤𝑘𝑘−1𝑖𝑖 𝑝𝑝�𝑧𝑧𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 �.  

Based on the abovementioned background, CPF mainly 
consists of three steps, the particles generation, the weight 
calculation and the resampling. 
1. Particles generation 
As an initial step, the amount (N) of particles are firstly 
generated from a priori distribution and pass further through 
the transition model, 𝑥𝑥𝑘𝑘𝑖𝑖 ~𝑝𝑝�𝑥𝑥𝑘𝑘�𝑥𝑥𝑘𝑘−1𝑖𝑖 �, 𝑖𝑖 = 1 …𝑁𝑁. 

 

2. Weight calculation 
The likelihood of each particle 𝑥𝑥𝑘𝑘𝑖𝑖  is calculated with the 
available measurement 𝑧𝑧𝑘𝑘 , 𝑤𝑤𝑘𝑘𝑖𝑖 = 𝑝𝑝�𝑧𝑧𝑘𝑘�𝑥𝑥𝑘𝑘𝑖𝑖 � , and then is 

normalized as 𝑤𝑤�𝑘𝑘𝑖𝑖 = 𝑤𝑤𝑘𝑘
𝑖𝑖

∑ 𝑤𝑤𝑘𝑘
𝑖𝑖𝑁𝑁

𝑖𝑖=1
. 

3. Resampling 
In the most frequently used resampling method (the 
multinomial resampling), the weight of each particle is 
measured with a threshold, which is selected as a random 
value between 0 and 1. Only the particles with high weight 
(above threshold) are kept. 

2.2. Enhanced Particle Filter 

The procedure of Enhanced Particle Filter (EPF) is similar to 
CPF and consists of three steps as well: a) the particle 
generation, b) the weight calculation and c) the resampling.  

In this work, the Systematic Resampling (SR) is utilized to 
replace the resampling step of CPF and enhance the 
performance. Unlike the traditional method, which is 
implemented for the whole interval 𝑈𝑈  with a random 
threshold between 0 and 1, the SR divides the whole interval 
into N subspaces 𝑈𝑈𝑖𝑖 = �𝑖𝑖−1

𝑁𝑁
, 𝑖𝑖
𝑁𝑁
� , 𝑖𝑖 = 1, … ,𝑁𝑁 , and the 

particles are taken with a corresponding random threshold in 
the 𝑈𝑈𝑖𝑖. 

In comparison with the traditional approach, the principle of 
SR guarantees more particle diversity in each recursive step 
and additionally the computation complexity for the 𝑈𝑈𝑖𝑖  is 
lower than for the original 𝑈𝑈 (Li et al. 2015). Therefore, SR 
is combined with step 1 and 2 presented in CPF and is 
considered as an enhanced version of the Particle Filter. 

3. CYCLIC SPECTRAL COHERENCE 

Cyclostationary signals are a special category of 
nonstationary signals carrying hidden periodicities in their 
structure. A signal is characterized as first order 
cyclostationary (CS1) if its first order statistical moment is a 
periodic function of period T. 

    𝑀𝑀1𝑥𝑥(𝑡𝑡) = 𝐸𝐸{𝑥𝑥(𝑡𝑡)} = 𝑀𝑀1𝑥𝑥(𝑡𝑡 + 𝑇𝑇)       (6) 

The second-order of cyclostationarity (CS2) can be defined 
as a function whose autocorrelation is T-periodic: 

        𝑅𝑅2𝑥𝑥(𝑡𝑡, 𝜏𝜏) = 𝑅𝑅2𝑥𝑥(𝑡𝑡 + 𝑇𝑇, 𝜏𝜏) = 𝐸𝐸{𝑥𝑥(𝑡𝑡)𝑥𝑥∗(𝑡𝑡 − 𝜏𝜏)}       (7) 

where t represents the time, 𝑥𝑥 stands for the vibration signal, 
𝜏𝜏 is the time lag and 𝐸𝐸 is the ensemble average operator. The 
Cyclic Spectral Correlation (CSC) can be firstly estimated, 
describing the pair of frequency shifted correlations. 

       𝑆𝑆𝑥𝑥(𝛼𝛼, 𝑓𝑓) =  𝑙𝑙𝑖𝑖𝑙𝑙
𝑊𝑊→∞

𝑊𝑊−1 𝐸𝐸[ℱ𝑊𝑊{𝑥𝑥(𝑡𝑡)}∗ℱ𝑊𝑊{𝑥𝑥(𝑡𝑡)}]           (8) 

where, 𝑊𝑊 is the time duration and ℱ𝑊𝑊{𝑥𝑥(𝑡𝑡)} is the Fourier 
transform of signal 𝑥𝑥(𝑡𝑡). The processing of the CSC reveals 
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the correlation levels at which each carrier frequency 𝑓𝑓  is 
modulated by the cyclic frequency 𝛼𝛼.  

The Cyclic Spectral Coherence (CSCoh) is defined (Antoni, 
2007) as the normalization of the Cyclic Spectral Correlation: 

                        𝛾𝛾(𝛼𝛼, 𝑓𝑓) = 𝑆𝑆𝑥𝑥(𝛼𝛼,𝑓𝑓)
�𝑆𝑆𝑥𝑥(0,𝑓𝑓)𝑆𝑆𝑥𝑥(0,𝑓𝑓−𝛼𝛼)

                     (9) 

The CSCoh takes values in the range between 0 and 1. The 
CSCoh can be presented as a map in the plane of the 
frequency 𝑓𝑓 and the cyclic frequency 𝛼𝛼. The integration of 
the CSCoh over the carrier frequency axis 𝑓𝑓 has been 
proposed in order to extract a spectrum termed as Enhanced 
Envelope Spectrum (EES), which is an improved version of 
the classical Squared Envelope Spectrum: 

                     𝐸𝐸𝐸𝐸𝑆𝑆(𝛼𝛼) = 1
𝑓𝑓2−𝑓𝑓1

∫ |𝛾𝛾(𝛼𝛼, 𝑓𝑓)|𝑑𝑑𝑓𝑓𝑓𝑓2
𝑓𝑓1

                        (10) 

where 𝑓𝑓1  is equal to zero and 𝑓𝑓2  is equal to the Nyquist 
frequency.  

 
Figure 1. Flowchart of the RUL prediction. 

4. METHODOLOGY FOR THE ESTIMATION OF THE 
REMAINING USEFUL LIFE OF REBS 

In this paper an advanced data driven methodology for the 
estimation of the RUL of rolling element bearings is 
presented based on the Enhanced Particle Filtering and the 
Enhanced Envelope Spectrum. The proposed general 
methodology consists of different steps as presented in the 
Flowchart in Figure 1. 

Step 1: Loading of Dataset 

The methodology is based on the exploitation of available 
training data, e.g. available field data or data captured during 
an accelerated degradation test. 

Step 2: Feature extraction  

Different signal processing techniques can be used in order 
to extract dedicated diagnostic/prognostic features in the time, 
frequency, time-frequency or frequency-frequency domain. 

Step 3: Feature selection  

The prognostic feature should follow accurately the 
degradation process. The goodness of the feature can be 
characterized by three aspects: the monotonicity, the 
prognosability and the trendability. Additionally, the 
diagnostic/prognostic feature should detect the fault at an 
early stage in order to facilitate the early start of prediction. 
Recently, the EES based on the CSCoh has been proposed as 
a powerful technique in the fault diagnosis (Antoni 2007, 
Ricardo Mauricio et al. 2018) and a CSCoh based feature is 
therefore introduced in this paper. The feature is defined as 
the sum of the M-harmonics of the characteristic bearing fault 
frequencies 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡. 

𝑦𝑦 = ∑ 𝐸𝐸𝐸𝐸𝑆𝑆(𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡)𝑀𝑀
𝑗𝑗=1       (11) 

where EES(j 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡)  indicates the amplitude of the 
𝑗𝑗𝑡𝑡ℎ harmonic of the characteristic fault frequency. In this 
paper M=3 harmonics are considered. The feature is further 
smoothed in order to remove possible outliers and 
fluctuations. 

Step 4: Setting fault detection and End Of Life Thresholds 

 
Figure 2. Illustration of threshold decision. 

 

As demonstrated at Figure 2, the monitoring feature is 
expected to have a stable trend in the beginning. The average 
value of the first N samples is consider as the health reference 
𝐻𝐻0: 

𝐻𝐻0 = 1
𝑁𝑁
∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1                       (12) 

The start time of prediction 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡  is triggered by 𝐻𝐻0 when 
the feature value exceeds a threshold 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟1. 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟1 = (1 + 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝) ∙ 𝐻𝐻0      (13) 
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The percentage 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝 can be defined based on the experience 
specifically for each case. The second threshold 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟2 
corresponds to the End Of Life (EOL) of the 
bearing/component. 

       𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟2 = 𝑦𝑦𝑝𝑝𝑒𝑒𝑝𝑝       (14) 

Therefore, the samples below the 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟1  are utilized as 
training data, and the rest between 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟1  and 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟2  as 
testing data. 

Step 5: Data model decision 

A degradation data model is selected corresponding to the 
selected feature. The model 𝑓𝑓(𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑒𝑒), characterized 
by the model parameters 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑒𝑒  should describe well 
the monitoring feature. 

Step 6: The initial parameters 

The initial parameters 𝑎𝑎10, 𝑎𝑎20, … , 𝑎𝑎𝑒𝑒0  of the model can be 
extracted using curve fitting on the training data. Moreover 
the Particle Filter requires the initially manual selection of the 
corresponding variance of the parameters, i.e. the 
𝑄𝑄𝑓𝑓1,𝑄𝑄𝑓𝑓2 , … ,𝑄𝑄𝑓𝑓𝑒𝑒 , the process noise variance 𝑄𝑄𝑥𝑥  and the 
measurement noise 𝑄𝑄𝑧𝑧 . The particle number is also an 
influence factor, which could be further evaluated in terms of 
the estimation accuracy, the computation effort and the 
efficient particle rate. 

Step 7: Particle Filter  

As the key part of the proposed framework, the selected 
model is adopted as the transition equation of a PF and is 
initialized with the fitted parameters. In this paper an 
Enhanced Particle Filter is used based on the Systematic 
Resampling approach, which allows the update of the model 
parameters at each step as soon as a new measurement is 
available by calculating the likelihood. 

Step 8: RUL prediction 

The RUL is calculated based on the Eq. (15) and (16): 

       𝑓𝑓(𝑎𝑎1𝑘𝑘, 𝑎𝑎2𝑘𝑘 , … , 𝑎𝑎𝑒𝑒𝑘𝑘, 𝑡𝑡𝑘𝑘) = 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟2     (15) 

where, 𝑎𝑎1k, 𝑎𝑎2k, … , 𝑎𝑎𝑒𝑒𝑘𝑘 are the model parameters at the 𝑘𝑘𝑡𝑡ℎ 
step. Finally the RUL can be estimated as: 

   𝑅𝑅𝑈𝑈𝑅𝑅𝑘𝑘 = 𝑡𝑡𝑘𝑘 − 𝑘𝑘       (16) 

As the bearing degradation evolves stochastically, the RUL 
prediction should not be provided by only a single value but 
be accompanied by a Confidence Interval (CI). The upper and 
the lower bound of the CI can be calculated as: 

𝑥𝑥𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �̅�𝑥 + 𝑧𝑧∗ 𝜎𝜎
√𝑒𝑒

      (17) 

𝑥𝑥𝑓𝑓𝑙𝑙𝑤𝑤𝑝𝑝𝑝𝑝 = �̅�𝑥 − 𝑧𝑧∗ 𝜎𝜎
√𝑒𝑒

      (18) 

where, �̅�𝑥 indicates the predicted mean value, 𝜎𝜎 the standard 
deviation of the amount 𝑛𝑛  particles and 𝑧𝑧∗  stands for the 
critical factor, which is selected equal to 1.96 for 95% of CI.  

Step 9: Evaluation 

The performance of the methodology can be evaluated using 
a number of performance metrics which are presented in 
section 5. 

5. PERFORMANCE METRICS  

In order to evaluate the quality of the prediction results, a 
number of performance metrics, presented at Table 1, can be 
used. 

 
The coefficients 𝛼𝛼 and 𝛼𝛼𝑝𝑝 inside the formula of AC and HP 
should fulfill the conditions that 𝛼𝛼 ∈ [1, 2]  and 𝛼𝛼𝑝𝑝 ∈
[0 ,100]% and are selected equal to 1 and 20% respectively 
in this paper. 

Five criteria have been utilized in order to evaluate 
quantifically the results in the view of accuracy and precision. 
Precision (PR) is a measurement of the dispersion of the 
prediction error, while the others evaluate the error itself. 
Accuracy (AC) expresses the relative error in percentage. 
Prognostics Horizon (PH) counts the number of prediction 
points falling within the error bound ( ±𝛼𝛼𝑝𝑝 = ±20% ) 
regarding to the actual RUL. The Mean Absolute Error 
(MAE) describes the average of the absolute error while the  
Error (ERR) indicates the error of the final point, representing 
the convergence of the final prediction. In the end, the 
achieved performance value is compared with the Perfect 
Score (PS), which signifies the ideal prediction. 

6. EXPERIMENTAL SETUP – DATA DESCRIPTION 

The proposed methodology is validated and evaluated on the 
Intelligent Maintenance Systems (IMS) public domain 
dataset. The experimental data has been captured during an 
endurance test realized at University of Cincinnati (Qiu et al. 
2009). The test rig consists of an electric motor, a pulley 
system and a shaft mounted on four double row Rexnord ZA-
2115 bearings (Figure 3). A radial load is applied on bearings 
No 2 and 3. The bearings are tested under constant operation 

Table 1. Performance metrics. 
 

Metrics Formula PS 

AC 
1
𝑁𝑁�𝑟𝑟−

|𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝|𝛼𝛼
𝑅𝑅𝑝𝑝(𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

 
 

1 

PR �∑ (𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑖𝑖) − 𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟��������)𝑁𝑁
𝑖𝑖=1

𝑁𝑁  
 

0 

PH 𝑃𝑃𝑟𝑟(𝑖𝑖)𝜖𝜖[𝑅𝑅𝑟𝑟(𝑖𝑖)(1 − 𝛼𝛼𝑝𝑝),𝑅𝑅𝑟𝑟(𝑖𝑖)(1 + 𝛼𝛼𝑝𝑝)]   N 

MAE 
1
𝑁𝑁�

|𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑖𝑖)|
𝑁𝑁

𝑖𝑖=1

 
 

0 

ERR 
|100 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟(𝑁𝑁)|

𝑅𝑅𝑟𝑟(𝑁𝑁)  
0 
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conditions (rotating speed 𝑛𝑛 = 2000 𝑟𝑟𝑝𝑝𝑙𝑙 , radial load 𝐹𝐹 =
6000 𝑙𝑙𝑙𝑙𝑟𝑟).  

 
Figure 3. Experimental setup and sensor placement. 

 
Three run-to-failure datasets have been collected. The End Of 
Life (EOL) of the bearings has been defined as a certain 
Accumulated Debris Level (ADL) on the magnetic plug. The 
detailed information about the experimental setup and the 
corresponding bearings and sensor locations is illustrated at 
Figure 3. 
 

 
Two accelerometers were attached on the bearing mountings 
in the x and y direction during the 1st dataset while only one 
direction was used for the 2nd and 3rd dataset. The duration of 
each signal is equal to one (1) second and sequential 
measurements were captured every 10 minutes using a NI 
DAQ Card 6062E. The sampling frequency 𝑓𝑓𝑠𝑠  has been 
reported as 20 𝑘𝑘𝐻𝐻𝑧𝑧 but it seems that it had been set equal to 
20.48 𝑘𝑘𝐻𝐻𝑧𝑧. The physical parameters and the characteristic 
frequencies of the REBs under the specific operation 
condition are listed in Table 2. At the end of the 1st endurance 
test, a defect was identified at the inner race of bearing No 3 
and at the rolling element of bearing No 4. An outer race 

defect on bearing No 1 and an outer race defect on bearing 
No 3 have been respectively identified at the end of the 
second and the third test. In this paper, the signals captured 
on the bearing No 3 of test 1 and on bearing No 1 of test 2 are 
processed. 

7. RESULTS AND DISCUSSION 

The abovementioned methodology for the estimation of the 
RUL is applied, tested and evaluated using the experimental 
data described above. 

7.1. CSCoh based Feature 

The feature extraction method presented in section 3 has been 
applied on the signals of dataset 1 and dataset 2 and the 
diagnostic features (based on the BPFI and the BPFO 
respectively) are presented at Figure 4 and 5. The raw 
features present fluctuations and therefore a median 
smoothing filter with a filter length equal to 15 is applied. In 
the case of dataset 1, shown in Figure 4, a stable trend is 
identified before t = 1800 (x 10 min), which further increases 
and fluctuates slowly between 1800 (x 10 min) and 2000 (x 
10 min). Next, the degradation evolves faster with a steeper 
increasing slope and heavy fluctuation. In the dataset 2, the 
fault can be identified around 528 (x 10 min) and the 
amplitude of the feature increases afterwards, fluctuates 
strongly from 700 (x 10 min) but remains around the value of 
1.2 after 800 (x 10 min). 

 
Figure 4. CSCoh based feature of dataset 1. 

7.1.1. Threshold setting 

Following the ideal trend presented in Figure 2, the features 
presented in Figure 4 and Figure 5 follow initially a stable 
trend. The first N points (N=100) are selected as healthy data 
and the value of 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝  is selected equal to 40%. The 
corresponding threshold 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟1 is marked with a red line at 

MOTOR

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Radial Load ThermocouplesAccelerometersBelt

200 400 600 800 1000 1200 1400 1600 1800 2000

time (x 10 min)
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A
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.

Dataset 1: sum of 3 x bpfi of bearing 3 (channel 6)

Raw

Smoothed

Thres
1

Table 2. Characteristics of bearings. 
 

Physical Parameters 
Pitch diameter 71.5 mm 
Rolling element diameter 8.4 mm 
Number of rolling element per row 16  
Contact angle 15.7° 
Static load 26690 N 
Characteristic Frequencies 
Shaft frequency 33 Hz 
Ball Pass Frequency Outer Race 
(BPFO) 236 Hz 

Ball Pass Frequency Inner Race (BPFI) 297 Hz 
Ball Spin Frequency (BSF) 278 Hz 
Fundamental Train Frequency (FTF) 15 Hz 
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the Figures 4 and 5. In general the threshold of EOL 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟2 
is set equal to the feature value of the last measurement, 
which ideally corresponds to the maximum value. However 
in the case of dataset 2, the 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟2  is set equal to the 
maximum value which corresponds to the 980th 
measurements, as the feature presents a sudden significant 
drop at the end. 

  
Figure 5. CSCoh based feature of dataset 2. 

 

 
Figure 6. Model comparison for dataset 1. 

7.1.2. Model selection 

The data model plays a critical role in the PF and as a result 
the appropriate decision results in better initialization and 
representation of the monitoring feature. Thus, two candidate 
models, 𝑓𝑓 = 𝑎𝑎𝑟𝑟𝑏𝑏∙𝑡𝑡  (model 1) and 𝑓𝑓 = 𝑎𝑎𝑟𝑟𝑏𝑏∙𝑡𝑡 + 𝑝𝑝𝑟𝑟𝑝𝑝∙𝑡𝑡  (model 
2), are initially selected and quantitatively compared. The 
model is selected by minimizing the Mean Absolute 

Percentage Error (MAPE) between the training feature line 
and the model. Model 2 presents a lower MAPE for both 
datasets as presented in Table 3 and tracks better the 
estimated feature as presented in Figure 6.  

 

7.1.3. Initial parameters selection and parameter tuning 

The model parameters 𝑎𝑎,  𝑙𝑙,  𝑝𝑝,  𝑑𝑑 are initialized based on the 
model extracted by the training data. On the other hand the 
variances of 𝑄𝑄𝑓𝑓 ,𝑄𝑄𝑏𝑏 ,𝑄𝑄𝑝𝑝 ,𝑄𝑄𝑝𝑝, the variance of the process noise 
𝑄𝑄𝑥𝑥  and the measurement noise 𝑄𝑄𝑧𝑧  are selected manually. 
Moreover the number of particles should be selected. In order 
to evaluate the influence of the particle number and the 
resampling method, seven (7) particle numbers are selected 
(100, 300, 500, 1000, 2000, 5000 and 10000) and the results 
are compared in respect to the MSE (Figure 7) and the 
effective rate (Figure 8). 

 
Figure 7. MSE for different particle number. 

 
It can be noted that the increase of particle number leads to a 
decrease of the MSE both for the CPF and the EPF. In 
comparison to the CPF, the EPF presents a lower MSE in all 
cases. Moreover, the MSE in the EPF approach remains 
almost steady while the particle number increases 
significantly (>2000). 

The effective rate of particles is presented in Figure 8. With 
the increase of the particle number, the efficient particle 
number increases fast for low amounts (<500) and then is 
stabilized. Compared to the CPF method, the EPF presents 
higher efficient particle numbers. Using the EPF, 500 
particles are enough to reach the same effectiveness level 
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Table 3. MAPE of dataset 1 and 2. 
 

 Model 1 Model 2 
Dataset 1 1.7927 0.9850 
Dataset 2 4.7027 2.7595 
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with 10000 particles which are needed in the case of CPF. 
Additionally the efficient particles rate for a high amount of 
particle number (>500) remains almost steady in the EPF. 
Therefore, the EPF achieves better performance compared to 
the classical PF. Based on the previous analysis the particle 
number is set equal to 500. 

 
Figure 8. Efficiency for different particle numbers. 

7.1.4. RUL prediction 

Taking into account the chosen model, the RUL is estimated 
based on the following equations: 

      𝑎𝑎𝑘𝑘 ∙ 𝑟𝑟𝑏𝑏𝑘𝑘∙𝑡𝑡𝑘𝑘 + 𝑝𝑝𝑘𝑘 ∙ 𝑟𝑟𝑝𝑝𝑘𝑘∙𝑡𝑡𝑘𝑘 = 𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑟𝑟2       (19) 

where, 𝑎𝑎𝑘𝑘, 𝑙𝑙𝑘𝑘, 𝑝𝑝𝑘𝑘, 𝑑𝑑𝑘𝑘 are the model parameters at the step 𝑘𝑘. 
The RUL is further estimated as: 

         𝑅𝑅𝑈𝑈𝑅𝑅𝑘𝑘 = 𝑡𝑡𝑘𝑘 − 𝑘𝑘      (20) 

7.2. Results of the RUL prediction 

The methodology described above is further evaluated based 
on the two IMS datasets. The effectiveness of the estimation 
of the RUL using EPF is investigated and compared with CPF 
and other state of art methods, e.g. the simple extrapolation 
(EXT), the Classic Kalman Filter (CKF) and the Extended 
Kalman Filter (EKF). The EXT provides a RUL estimation 
using directly the model estimated based on the curve fit of 
real time data in each step. The performance of these methods 
are finally evaluated based on the abovementioned 
performance metrics. 

7.2.1. Case 1: Bearing 3 of dataset 1  

The feature estimation using the EXT, the CKF, the EKF, the 
CPF and the EPF is shown in Figure 9. Analyzing the figure, 
it can be concluded that the EXT, the CKF and the EKF 
provide a bad estimation of the feature value. The prediction 
based on the EPF achieves the best estimation. In order to 
quantitatively compare the performance of the three methods, 

the error (MAPE) is estimated and as it can be seen in Table 
4 the EPF achieves the best performance. 

 

 
Figure 9. Feature estimation (Dataset 1). 

 

 
Figure 10. RUL estimation (Dataset 1). 

 

The performance of the RUL estimation is presented in 
Figure 10. The RUL estimated based on the CKF deviates 
significantly by the (“assumed”) true one. The EXT, the EKF 
and the CPF predictions present a high error compared to the 
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Table 4. MAPE of dataset 1. 
 

Method MAPE 
EXT 13.6 
CKF 13.7 
EKF 17.3 
CPF 8.8 
EPF 6.3 
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EPF before the 2090 (x 10 min) and then approach the actual 
RUL till the 2147 (x 10 min). Afterwards the EXT and the 
CPF seem to underestimate the actual RUL as it can be seen 
in Figure 11. At the end the EPF provides a more accurate 
RUL prediction compared to all of others. 

 
Figure 11. Zoom of the RUL estimation (Dataset 1). 

 
In addition, the RUL prediction performance is also evaluated 
based on the performance metrics. The criterion of AC, HP, 
MAE and ERR note that EPF achieve the best results while 
the lower PR value of CPF indicates that the RUL prediction 
fluctuates less than others. Moreover, the MAE value (33.6) 
of EPF practically means that the RUL estimation presents a 
5.6 hours difference for the predicted period (23.2 hours) 
while the HP (62) declares that 62 points fall into the error 
interval (±20%), which corresponds to around 10.3 hours. 

 

7.2.2. Case 2: Bearing 1 of dataset 2 

Due to lack of space a figure demonstrating the feature 
estimation is not presented here but it should be noted that the 
EPF achieves the min error. The RUL of the bearing is 
predicted based on the three methods and the results are 
presented in Figure 12. The RUL estimated by the CKF and 
the EKF becomes negative after around 710 (x 10 min) and 
by the EXT after t = 840 (x 10 min). The RUL prediction 
based on the CPF fluctuates heavily at the beginning and then 

decreases linearly presenting a bias from the actual RUL. 
However, the EPF seems to be the best method as most of its 
predicted RUL points fall within the error bound and starting 
from t = 600 (x 10 min) the RUL converges ideally to the 
straight line, still presenting a minor bias, as can be seen in 
the zoomed scope of Figure 12.  

 
Figure 12. RUL estimation (Dataset 2). 

 
The methods are further compared based on the prognostic 
metrics presented in Table 6. The EPF achieves the best 
performance based on all metrics. It could be mentioned that 
the value of MAE (5) indicates that there is only 0.835 hour 
error for the whole prediction period (68.3 hours).  

 

8. CONCLUSION 

In this paper a prognostic methodology for the estimation of 
Remaining Useful Life of bearings exploiting the properties 
of Cyclic Spectral Coherence and the Particle Filtering have 
been presented. The different steps of the methodology have 
been analyzed and a guideline for the proper selection of the 
different parameters has been presented. An advanced 
resampling methodology is applied and its performance has 
been evaluated and compared with the classical one and other 
state of art approaches. Moreover the influence and the 
efficacy of the number of particles has been analyzed for two 
resampling approaches. Three different prediction methods 
have been evaluated and compared on the IMS dataset and 
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Table 5. Performance metrics of Dataset 1. 
 

 AC PR HP MAE ERR 
EXT 0.4 82.6 12 69.7 125 
CKF 0.4 7.7E4 0 2.5E4 110 
EKF 0.4 232.5 8 96.7 -229 
CPF 0.6 19.7 10 35 276 
EPF 0.6 41.5 62 33.6 -107 
PS 1 0 N 0 0 

 

Table 6. Performance metrics of Dataset 2. 
 

 AC PR HP MAE ERR 
EXT 0.4 75.5 0 185.5 6E3 
CKF 0.1 2.7E4 3 5.8E3 4E4 
EKF 0.2 42.2 0 328.9 4E4 
CPF 0.2 85.1 10 345.2 -4E5 
EPF 1 21 398 5 -88 
PS 1 0 N 0 0 
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the Enhanced Particle Filter demonstrates the best 
performance based on performance metrics. 
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